98%
921
2 minutes
20
This study addresses the delineation of areas that contribute baseflow to a stream reach, also known as stream capture zones. Such areas can be delineated using standard well capture zone delineation methods, with three important differences: (1) natural gradients are smaller compared to those produced by supply wells and are therefore subject to greater numerical errors, (2) stream discharge varies seasonally, and (3) stream discharge varies spatially. This study focuses on model-related uncertainties due to model characteristics, discretization schemes, delineation methods, and particle tracking algorithms. The methodology is applied to the Alder Creek watershed in southwestern Ontario. Four different model codes are compared: HydroGeoSphere, WATFLOW, MODFLOW, and FEFLOW. In addition, two delineation methods are compared: reverse particle tracking and reverse transport, where the latter considers local-scale parameter uncertainty by using a macrodispersion term to produce a capture probability plume. The results from this study indicate that different models can calibrate acceptably well to the same data and produce very similar distributions of hydraulic head, but can produce different capture zones. The stream capture zone is found to be highly sensitive to the particle tracking algorithm. It was also found that particle tracking by itself, if applied to complex systems such as the Alder Creek watershed, would require considerable subjective judgement in the delineation of stream capture zones. Reverse transport is an alternative and more reliable approach that provides probability intervals for the baseflow contribution areas, taking uncertainty into account. The two approaches can be used together to enhance the confidence in the final outcome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconhyd.2016.11.001 | DOI Listing |
J R Soc Interface
September 2025
Institute of Intelligent Systems and Robotics, Sorbonne Université, Paris, Île-de-France, France.
A number of techniques have been developed to measure the three-dimensional trajectories of protists, which require special experimental set-ups, such as a pair of orthogonal cameras. On the other hand, machine learning techniques have been used to estimate the vertical position of spherical particles from the defocus pattern, but they require the acquisition of a labelled dataset with finely spaced vertical positions. Here, we describe a simple way to make a dataset of images labelled with vertical position from a single 5 min movie, based on a tilted slide set-up.
View Article and Find Full Text PDFBioinspir Biomim
September 2025
Mechanical Engineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, Massachusetts, 02747-2300, UNITED STATES.
Harbor seals possess a remarkable ability to detect hydrodynamic footprints left by moving objects, even long after the objects have passed, through interactions between wake flows and their uniquely shaped whiskers. While the flow-induced vibration (FIV) of harbor seal whisker models has been extensively studied, their response to unsteady wakes generated by upstream moving bodies remains poorly understood. This study investigates the wake-induced vibration (WIV) of a flexibly mounted harbor seal-inspired whisker positioned downstream of a forced-oscillating circular cylinder, simulating the hydrodynamic footprint of a moving object.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287, Darmstadt, Germany.
Chromatin dynamics play a crucial role in cellular differentiation, yet tools for studying global chromatin mobility in living cells remain limited. Here, a novel probe is developeded for the metabolic labeling of chromatin and tracking its mobility during neural differentiation. The labeling system utilizes a newly developed silicon rhodamine-conjugated deoxycytidine triphosphate (dCTP).
View Article and Find Full Text PDFEur J Dent
September 2025
Doctoral Program, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia.
Although platelet-rich plasma (PRP) has demonstrated considerable regenerative potential in regenerative endodontic treatment, its clinical efficacy may be limited by the rapid degradation of its bioactive components, leading to inconsistent outcomes. To overcome this challenge, the present study explores the use of nano-sized exosomes derived from PRP-a novel designated as PRP exosomes (PRP-Exo)-as a more stable and targeted biomolecular delivery system to promote odontogenic differentiation within the dentin-pulp complex. The primary objective is to investigate the expression of key odontogenic markers, transforming growth factor-β1 (TGF-β1) and Dentin Sialophosphoprotein (DSPP), in human dental pulp stem cells (hDPSCs) following PRP-Exo treatment.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304.
The biophysical properties of single cells are crucial for understanding cellular function and behavior in biology and medicine. However, precise manipulation of cells in 3-D microfluidic environments remains challenging, particularly for heterogeneous populations. Here, we present "Electro-LEV," a unique platform integrating electromagnetic and magnetic levitation principles for dynamic 3-D control of cell position during separation.
View Article and Find Full Text PDF