Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Prediction tasks over nodes and edges in networks require careful effort in engineering features used by learning algorithms. Recent research in the broader field of representation learning has led to significant progress in automating prediction by learning the features themselves. However, present feature learning approaches are not expressive enough to capture the diversity of connectivity patterns observed in networks. Here we propose , an algorithmic framework for learning continuous feature representations for nodes in networks. In , we learn a mapping of nodes to a low-dimensional space of features that maximizes the likelihood of preserving network neighborhoods of nodes. We define a flexible notion of a node's network neighborhood and design a biased random walk procedure, which efficiently explores diverse neighborhoods. Our algorithm generalizes prior work which is based on rigid notions of network neighborhoods, and we argue that the added flexibility in exploring neighborhoods is the key to learning richer representations. We demonstrate the efficacy of over existing state-of-the-art techniques on multi-label classification and link prediction in several real-world networks from diverse domains. Taken together, our work represents a new way for efficiently learning state-of-the-art task-independent representations in complex networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5108654PMC
http://dx.doi.org/10.1145/2939672.2939754DOI Listing

Publication Analysis

Top Keywords

learning
8
feature learning
8
network neighborhoods
8
networks
6
node2vec scalable
4
scalable feature
4
learning networks
4
networks prediction
4
prediction tasks
4
nodes
4

Similar Publications

Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.

Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.

View Article and Find Full Text PDF

Optimising the educational utility of live tissue training in trauma surgery.

BMC Med Educ

September 2025

Department of Learning, Informatics, Management & Ethics (LIME) Widerströmska huset, Karolinska Institutet, Stockholm, Sweden.

Background: Live tissue training (LTT) refers to the use of live anaesthetised animals for the purpose of medical education. It is a type of simulation training that is contentious, and there is an ethical imperative for educators to justify the use of animals. This should include scrutinising educational practices.

View Article and Find Full Text PDF

Background: Little is documented on key community-based One Health (OH) approach implementation, pro-activeness and effectiveness of interactions and strategies against Mpox outbreak public health emergency in international concern (PHEIC) in various African countries in order to stamp out the persisting Mpox outbreak threat and burden. Prioritizing critical community-based interventions and lessons learned from previous COVID-19, Mpox, Ebola, COVID-19, Rift Valley Fever and Marburg virus outbreaks revealed critical shortcomings in funding, surveillance, and community engagement that plague public health initiatives across the continent. The article provides critical insights and benefits of community-based One Health approaches implementation against Mpox outbreak management in Africa.

View Article and Find Full Text PDF