98%
921
2 minutes
20
A rice mutant aberrant floral organ 1 (afo1) was identified, showing increased floral organ number, aberrant floral organ identity and loss of floral meristem determinacy. A disruption of sequence integrity at 6292-bp upstream of RFL by a T-DNA insertion led to varied RFL expression patterns in floral meristem and floret in afo1 and caused the mutant phenotype. The LEAFY (LFY) transcription factor and its homologs affect many aspects of plant development, especially floral development. RICE FLORICAULA/LEAFY (RFL), the rice ortholog of LFY, has complicated expression patterns and different functions in floral development. However, the mechanisms regulating the spatial-temporal expression of RFL remain largely unknown. Here, we describe a rice aberrant floral organ 1 (afo1) mutant that was produced by a T-DNA insertion at 6292-bp upstream of the start codon of RFL. This insertion altered the expression of RFL in floral meristem (FM) and floret. The in situ hybridization result showed that, when florets appear, RFL was expressed almost exclusively at the palea/lemma adaxial base adjacent to lodicules in the wild-type panicle. However, in afo1 florets, RFL mRNA signals were detected in the region between lodicule and stamen, and strong signals persisted in FM. The altered pattern of RFL expression in afo1 resulted in enlarged FMs, more floral organs, aberrant floral organ identity, and loss of FM determinacy. Transformation of rice with an RFL construct driven by the 6292-bp upstream genomic sequence re-built the mutant phenotype similar to afo1. The results suggest that the far-upstream region of RFL may contain potential cis element(s) that are critical to define the precise spatial-temporal expression pattern of RFL for its function in floral development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11103-016-0556-6 | DOI Listing |
Planta
September 2025
Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon, 25451, Republic of Korea.
The regulation of photoperiod and light intensity significantly affected Agastache rugosa by enhancing growth, modifying flowering dynamics, and promoting the accumulation of key phenolic compounds. Agastache rugosa is a medicinal and aromatic plant valued for its bioactive compounds, which contribute to its application in the flavoring, perfume, and food industries. However, variability in the composition of the bioactive compounds poses challenges for its commercial utilization.
View Article and Find Full Text PDFBMC Plant Biol
September 2025
College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, PR China.
Background: The Aux/IAA protein is integral to the modulation of auxin signaling, which is essential for plant growth and development. However, systematic analysis on the Aux/IAA gene family in pineapple ( L.) remains unexplored.
View Article and Find Full Text PDFCurr Opin Plant Biol
September 2025
Department of Plant Biology, University of Illinois, Urbana-Champaign, USA. Electronic address:
Early floral meristem (FM) patterning is one of the most intensively studied developmental programs in plants. While extensive work has uncovered the molecular networks underlying key processes such as organ initiation and identity specification, integrating this knowledge into a comprehensive framework remains challenging. Organ initiation is governed by auxin-mediated positioning and boundary formation, whereas organ identity is determined by the combinatorial activities of ABCE-class transcription factors.
View Article and Find Full Text PDFEcol Evol
September 2025
Wildlife Ecology and Conservation Group, Department of Environmental Sciences Wageningen University & Research Wageningen the Netherlands.
The timing of seasonal life cycle events in many organisms is regulated by environmental cues, and understanding these relationships is essential for predicting species' responses to climate change. In honeybee colonies, brood rearing must align with floral resource availability to ensure colony growth and survival. However, the cues that initiate brood rearing remain unclear.
View Article and Find Full Text PDFPLoS Genet
September 2025
Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
The plant life cycle progresses through distinct phases defined by the morphology of the organs formed on the shoot. In Arabidopsis, age-dependent reduction in the related microRNAs miR156 and miR157 controls transitions from juvenile to adult vegetative phase and from adult to reproductive phase. However, whether these miRNA isoforms have specific contributions remains unclear.
View Article and Find Full Text PDF