98%
921
2 minutes
20
The design of novel nanostructures with tailored opto-electronic properties is a crucial step for third-generation photovoltaics, and the development of cheap and environmentally compatible materials is still a challenge. Carbon quantum dots (CQDs) emerged as promising candidates but usually a low processability and poor electron-donor properties hampered their photovoltaic applications. We tackle these issues through the synthesis and photophysical characterization of N-doped CQDs functionalized with different thiophene-containing groups. Functionalization was aimed at enhancing the electron donating properties of the carbon dots and improving the solubility in nonpolar solvents. The increased solubility in organic solvents allowed us to investigate the photoinduced interactions of the functionalized carbon dots with the fullerene derivative PCBM in solution and in solid blends. The investigation was carried out by cyclic voltammetry, photoluminescence spectroscopy and electron paramagnetic resonance (EPR). The remarkable oxidation potential shift of the functionalized carbon dots with respect to the pristine materials and the HOMO-LUMO energies strongly suggest them as good electron donors towards PCBM. The electron transfer process between CQDs and PCBM resulted in efficient fluorescence quenching in solution and in total quenching in solid blends. By using EPR spectroscopy in the solid blends, we demonstrated the efficient electron transfer by observing the photoinduced formation of a PCBM radical anion in the presence of functionalized CQDs. Time-resolved EPR allowed us to identify differences in the charge transport efficiency for different CQD:PCBM blends. The enhanced processability of CQDs with PCBM and the promising charge-generation and separation properties pave the way to the development of "all-carbon" photovoltaic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6cp05981c | DOI Listing |
Mol Pharm
September 2025
Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, P. R. China.
Myocardial injury constitutes a life-threatening complication of sepsis, driven by synergistic oxidative-inflammatory pathology involving dysregulated production of reactive oxygen species (ROS), reactive nitrogen species (RNS), and proinflammatory cytokines. This pathophysiological cascade remarkably elevates morbidity and mortality rates in septic patients, emerging as a key contributor to poor clinical outcomes. Despite its clinical significance, no clinically validated therapeutics currently exist for managing septic cardiomyopathy.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
University of Texas at Austin, Department of Physics, Austin, Texas 78712, USA.
We show that the ground state of a weakly charged two-dimensional electron-hole fluid in a strong magnetic field is a broken translation symmetry state with interpenetrating lattices of localized vortices and antivortices in the electron-hole-pair field. The vortices and antivortices carry fractional charges of equal sign but unequal magnitude and have a honeycomb-lattice structure that contrasts with the triangular lattices of superconducting electron-electron-pair vortex lattices. We predict that increasing charge density or a weakening magnetic field drives a vortex delocalization transition that would be signaled experimentally by an abrupt increase in counterflow transport resistance.
View Article and Find Full Text PDFPLoS One
September 2025
Laboratório de Termitologia, Departamento de Sistemática e Ecologia, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil.
With the aim of expanding the possibilities of identifying termite species, in the present study we generated genetic data based on sequences of the mitochondrial gene encoding cytochrome c oxidase subunit II (COII) for termites (Blattodea: Isoptera) occurring in the state of Paraíba, northeastern Brazil. The genetic data were obtained from 135 COII sequences identified in 28 genera and 48 species. These are the first COII sequences for 15 taxa (31.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Duke University, Thomas Lord Department of Mechanical Engineering and Materials Science, Durham, North Carolina 27708, USA.
Chiral phonons, which are characterized by rotational atomic motion, offer a unique mechanism for transferring angular momentum from phonons to electron spins and other angular momentum carriers. In this Letter, we present a theoretical investigation into the emergence of chiral phonons in a chiral hybrid organic-inorganic perovskite (HOIP) and their critical roles in rigid-body rotation, magnetic moment generation, and spin transport under nonthermal equilibrium conditions. We demonstrate that phonon angular momentum can modify the spin chemical potential via a proposed microscopic Barnett effect, leading to a spatially varying spin chemical potential at the metal/HOIP interface, which subsequently induces spin currents in an adjacent Cu layer, with a magnitude consistent with experimental observations.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.
Coherent electron spin states within paramagnetic molecules hold significant potential for microscopic quantum sensing. However, all-optical coherence measurements amenable to high spatial and temporal resolution under ambient conditions remain a significant challenge. Here we conduct room-temperature, picosecond time-resolved Faraday ellipticity/rotation (TRFE/R) measurements of the electron spin decoherence time in [IrBr].
View Article and Find Full Text PDF