A genetic genomics-expression approach reveals components of the molecular mechanisms beyond the cell wall that underlie peach fruit woolliness due to cold storage.

Plant Mol Biol

Instituto de Biología Molecular y Celular de Plantas. Consejo Superior de Investigaciones Científicas (CSIC) -Universidad Politécnica de Valencia (UPV), 46022, Valencia, Spain.

Published: November 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Peach fruits subjected to prolonged cold storage (CS) to delay decay and over-ripening often develop a form of chilling injury (CI) called mealiness/woolliness (WLT), a flesh textural disorder characterized by lack of juiciness. Transcript profiles were analyzed after different lengths of CS and subsequent shelf life ripening (SLR) in pools of fruits from siblings of the Pop-DG population with contrasting sensitivity to develop WLT. This was followed by quantitative PCR on pools and individual lines of the Pop-DG population to validate and extend the microarray results. Relative tolerance to WLT development during SLR was related to the fruit's ability to recover from cold and the reactivation of normal ripening, processes that are probably regulated by transcription factors involved in stress protection, stress recovery and induction of ripening. Furthermore, our results showed that altered ripening in WLT fruits during shelf life is probably due, in part, to cold-induced desynchronization of the ripening program involving ethylene and auxin hormonal regulation of metabolism and cell wall. In addition, we found strong correlation between expression of RNA translation and protein assembly genes and the visual injury symptoms.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11103-016-0526-zDOI Listing

Publication Analysis

Top Keywords

cell wall
8
cold storage
8
shelf life
8
pop-dg population
8
ripening
5
genetic genomics-expression
4
genomics-expression approach
4
approach reveals
4
reveals components
4
components molecular
4

Similar Publications

Microbial Enzymes for Biomass Conversion.

Annu Rev Microbiol

September 2025

3Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.

Plant biomass has emerged as a cornerstone of the global bioenergy landscape because of its abundance and cost-effectiveness. The cell wall of plant biomass is an intricate network of cellulose, hemicellulose, and lignin. The hydrolysis of cellulose and hemicellulose by holoenzymes converts these polymers into monosaccharides and paves the way for the production of bioethanol and other bio-based products.

View Article and Find Full Text PDF

The small GTPase Rho5-Yet another player in yeast glucose signaling.

PLoS Genet

September 2025

Department of Biology/Chemistry, Division of Genetics, University of Osnabrück, Barbarastrasse, Osnabrück, Germany.

The small GTPase Rho5 has been shown to be involved in regulating the Baker's yeast response to stress on the cell wall, high medium osmolarity, and reactive oxygen species. These stress conditions trigger a rapid translocation of Rho5 and its dimeric GDP/GTP exchange factor (GEF) to the mitochondrial surface, which was also observed upon glucose starvation. We here show that rho5 deletions affect carbohydrate metabolism both at the transcriptomic and the proteomic level, in addition to cell wall and mitochondrial composition.

View Article and Find Full Text PDF

A Python-scripted software tool has been developed to help study the heterogeneity of gene changes, markedly or moderately expressed, when several experimental conditions are compared. The analysis workflow encloses a scorecard that groups genes based on relative fold-change and statistical significance, providing additional functions that facilitate knowledge extraction. The scorecard reports highlight unique patterns of gene regulation, such as genes whose expression is consistently up- or down-regulated across experiments, all of which are supported by graphs and summaries to characterize the dataset under investigation.

View Article and Find Full Text PDF

CRISPR RNP-Mediated Transgene-Free Genome Editing in Plants: Advances, Challenges and Future Directions for Tree Species.

Plant Cell Environ

September 2025

State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry

CRISPR ribonucleoprotein (RNP)-mediated genome editing offers a transgene-free platform for precise genetic modification in diverse herbaceous and tree species, including rice, wheat, apple, poplar, oil palm, rubber tree and grapevine. However, its application in woody plants faces distinct challenges, notably inefficient delivery and regeneration difficulties, particularly in species such as bamboo. While some of these issues also occur in herbaceous plants, they are often significantly more complex in woody species due to factors such as intricate cell wall architecture, widespread recalcitrant genotypes and inherent limitations of current delivery platforms.

View Article and Find Full Text PDF

Chronic stress-induced cardiac hypertrophy remains a critical precursor to heart failure, with current therapies limited by incomplete mechanistic targeting. Cyclin-dependent kinases (CDKs), pivotal regulators of cell cycle and stress signaling, are emerging therapeutic targets in cardiovascular pathologies. Using bioinformatics analysis of human hypertrophic cardiomyopathy datasets (GSE5500, GSE136308) and a murine transverse aortic constriction (TAC) model, we investigated the therapeutic effects of the CDK inhibitor R547 (10 mg/kg, intraperitoneal every 3 days) on pressure overload-induced cardiac remodeling.

View Article and Find Full Text PDF