98%
921
2 minutes
20
Resonance energy transfer (RET) processes have wide applications; these processes involve a unidirectional energy transfer from a particular donor to a particular acceptor. Here, we report a plasmonic resonance energy transfer (PRET), which occurs from the surface of gold nanoparticles to fluorescent organic dyes, and coexists with a nanometal surface energy transfer (NSET) that operates in the reverse direction. The coexistence of both PRET and NSET in opposite directions means that the roles of both donor and acceptor can be interchanged, which could be identified by using spectrofluorometric measurements and light scattering dark field microscopic imaging. The experimental data could be further theoretically supported using Persson and Lang's model, the quasi-static approximation and finite-difference time-domain simulation. Moreover, disruption of the PRET process by altering the energy transfer pairs suggests that interactions occur inside the reversible energy transfer system, which manifest by increasing the fluorescence quenching efficiency of the NSET process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6nr03262a | DOI Listing |
J Phys Chem Lett
September 2025
Pacific Northwest National Laboratory, Richland, Washington 99354, United States.
Water-ion interactions govern the physicochemical properties of aqueous solutions, impacting the structure of the hydrogen bonding network and ion diffusivities. To elucidate these effects under alkaline conditions relevant to diverse application spaces, we examined NaOD-DO solutions using two-dimensional infrared spectroscopy (2D-IR), small-angle X-ray scattering (SAXS), and nuclear magnetic resonance spectroscopy (NMR). Vibrational energy transfer between the donor anion SeCN, used as a 2D-IR probe, and the acceptor anion OD was used to track the average separation distance of ions in the DO solutions, while SAXS and NMR experiments measured the structure of the bulk DO solvent.
View Article and Find Full Text PDFACS Nano
September 2025
Insitut für Physik and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Berlin 12489, Germany.
Electric gating in atomically thin field-effect devices based on transition-metal dichalcogenides has recently been employed to manipulate their excitonic states, even producing exotic phases of matter, such as an excitonic insulator or Bose-Einstein condensate. Here, we mimic the electric gating effect of a bilayer-MoS on graphite by charge transfer induced by the adsorption of molecular p- and n-type dopants. The electric fields produced are evaluated from the electronic energy-level realignment and Stark splitting determined by X-ray and UV photoelectron spectroscopy measurements and compare very well with literature values obtained by optical spectroscopy for similar systems.
View Article and Find Full Text PDFChemistry
September 2025
Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
The coordination chemistry of the planar, doubly π-extended bipyridine analog, 6,6',7,7'-biphenanthridine (p-biphe), is presented. The phenanthridine units in p-biphe are fused together at the 6- and 7- positions, and the resulting rigid ligand is compared with the more flexible parent "biphe" fused only at the 6-positions. p-Biphe is intensely fluorescent in solution with a much higher quantum yield, but, unlike biphe, at 77 K the fluorescence is not accompanied by any significant phosphorescence.
View Article and Find Full Text PDFChemistry
September 2025
Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Würzburg, 97074, Germany.
Photosensitization has emerged as a versatile tool to facilitate access to excited states under mild conditions, allowing for efficient and selective photochemical transformations. Herein, we report a very simple molecule, coronene bisimide (CBI), as a potent visible-light photosensitizer featuring a high extinction coefficient with a broadband absorption spanning from ultraviolet to green region of the visible spectrum, along with a long-lived triplet state generated via efficient intersystem crossing (ISC). Utilizing the triplet-triplet energy transfer (TTEnT) strategy, CBI catalyzes diverse reactions under green light irradiation.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
School of Materials Science and Engineering, Changchun University of Science and Technology Changchun, 130022, Jilin, People's Republic of China.
The synergistic effect of various ions with optical properties is an important method to regulate the Er ion upconversion luminescence process. However, the energy processes between them are complicated and difficult to separate, and it is challenging to clarify the results of each process when multiple ions are co-doped. Herein, a series of NaYF:Er were synthesized by the low-temperature combustion method, and the luminescence color of Er ions was modulated by doping Yb ions and Tm ions.
View Article and Find Full Text PDF