98%
921
2 minutes
20
Black phosphorus has been recently suggested as a very promising material for use in 2D field-effect transistors. However, due to its poor stability under ambient conditions, this material has not yet received as much attention as for instance MoS. We show that the recently demonstrated AlO encapsulation leads to highly stable devices. In particular, we report our long-term study on highly stable black phosphorus field-effect transistors, which show stable device characteristics for at least eight months. This high stability allows us to perform a detailed analysis of their reliability with respect to hysteresis as well as the arguably most important reliability issue in silicon technologies, the bias-temperature instability. We find that the hysteresis in these transistors depends strongly on the sweep rate and temperature. Moreover, the hysteresis dynamics in our devices are reproducible over a long time, which underlines their high reliability. Also, by using detailed physical models for oxide traps developed for Si technologies, we are able to capture the channel electrostatics of the black phosphorus FETs and determine the position of the defect energy band. Finally, we demonstrate that both hysteresis and bias-temperature instabilities are due to thermally activated charge trapping/detrapping by oxide traps and can be reduced if the device is covered by Teflon-AF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.6b04814 | DOI Listing |
Biomed Mater
September 2025
Lanzhou University Second Hospital, No.82 Cuiyingmen Street, Lanzhou, Lanzhou, Gansu, 730030, CHINA.
In recent years, the incidence of orthopedic diseases has increased significantly, while traditional treatments often face limitations such as limited efficacy and pronounced side effects. The development of nanomedicine technology provides novel strategies for orthopedic disease treatment. As an emerging two-dimensional (2D) nanomaterial, black phosphorus nanosheets (BPNS) demonstrate remarkable potential in treating orthopedic diseases due to their unique physicochemical properties, superior biocompatibility, and the fact that their degradation product-elemental phosphorus-constitutes an essential component of bone tissue.
View Article and Find Full Text PDFMar Environ Res
September 2025
Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; University of Chinese Academ
Phosphorus (P) is a critical limiting nutrient for phytoplankton growth in aquatic ecosystems. Under P-limitation, phytoplankton adapt by remodeling membrane lipids, replacing phospholipids (PLs) with non-P lipids such as sulfolipid sulfoquinovosyldiacylglycerol (SQDG) and betaine lipids (BLs). This mechanism is essential for reevaluating the relationship between phosphate (PO) concentrations and primary productivity.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Department of Public Health Sciences, University of Texas at El Paso, 211 Kelly Hall, 500 W University, El Paso, TX 79902, USA. Electronic address:
The correlation between Pb species formation and bioaccessibility in alkaline, smelter-impacted soil co-contaminated with other toxic trace elements after treatment with phosphorus-containing amendments was investigated. The soil was collected near a former copper smelter, El Paso, Texas. It contained Pb (3200 ± 142 mg kg), As (254 ± 14 mg kg), and Cd (110 ± 8 mg kg).
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
The Grainger College of Engineering, Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
Wastewater solids management is a key contributor to the operational cost and greenhouse gas (GHG) emissions of water resource recovery facilities (WRRFs). This study proposes a 'waste-to-energy' strategy using a hydrothermal liquefaction (HTL)-based system to displace conventional energy- and emission-intensive practices. The proposed system directs HTL-produced biocrude to oil refineries and recovers regionally tailored nitrogen and phosphorus fertilizers.
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China.
Unlabelled: Microalgae treatment is regarded as a green and environmentally acceptable method of treating pig farm biogas slurry (BS). Numerous studies have been conducted on the use of microalgae to treat sterilized BS. Nevertheless, in large-scale application settings, this method will undoubtedly result in high costs and low efficiency.
View Article and Find Full Text PDF