98%
921
2 minutes
20
Familial dysautonomia (FD) is an autosomal recessive congenital neuropathy that is caused by a mutation in the gene for inhibitor of kappa B kinase complex-associated protein (). Although FD patients suffer from multiple neuropathies, a major debilitation that affects their quality of life is progressive blindness. To determine the requirement for in the developing and adult retina, we generated conditional knockout (CKO) mice using a promoter-Cre (). In the retina, expression is detected predominantly in retinal ganglion cells (RGCs). At 6 months, significant loss of RGCs had occurred in the CKO retinas, with the greatest loss in the temporal retina, which is the same spatial phenotype observed in FD, Leber hereditary optic neuropathy, and dominant optic atrophy. Interestingly, the melanopsin-positive RGCs were resistant to degeneration. By 9 months, signs of photoreceptor degeneration were observed, which later progressed to panretinal degeneration, including RGC and photoreceptor loss, optic nerve thinning, Müller glial activation, and disruption of layers. Taking these results together, we conclude that although is not required for normal development of RGCs, its loss causes a slow, progressive RGC degeneration most severely in the temporal retina, which is later followed by indirect photoreceptor loss and complete retinal disorganization. This mouse model of FD is not only useful for identifying the mechanisms mediating retinal degeneration, but also provides a model system in which to attempt to test therapeutics that may mitigate the loss of vision in FD patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5037323 | PMC |
http://dx.doi.org/10.1523/ENEURO.0143-16.2016 | DOI Listing |
Sci Total Environ
September 2025
School of Environment & Natural Resources, Doon University, Dehradun 248001, Uttarakhand, India. Electronic address:
Biochar-based slow-release fertilizers (BSRFs) offer a promising alternative to conventional fertilizers by enhancing nutrient retention and reducing environmental loss. This study aimed to develop a sustainable and cost-effective BSRF through the co-pyrolysis of wheat straw (WS), bentonite and nutrient solution containing KHPO and KNO. WS and bentonite were blended in 50:50 and 70:30 ratios with fixed doses of nutrients, then co-pyrolyzed (at 350 °C and 500 °C) to produce BSRFs.
View Article and Find Full Text PDFUltrason Sonochem
September 2025
College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China. Electronic address:
Addressing the issues of slow decomposition and low nutrient release efficiency associated with traditional straw returning, this study innovatively applied ultrasound-assisted centrifugal separation technology to prepare submicron/nano-straw particles and systematically conducted a multi-scale investigation from microscopic to macroscopic levels. The core finding reveals that when the particle size reaches the 1 μm threshold, ultrasonic cavitation vigorously disrupts the straw structure, leading to efficient lignin removal (77.45 %) and a significant reduction in cellulose crystallinity, thereby fundamentally enhancing the degradation rate.
View Article and Find Full Text PDFFASEB J
September 2025
Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China.
Alzheimer's disease (AD) is influenced by genetic and environmental factors. Previous studies showed that enriched environments improved memory and reduced amyloid plaques in AD mice, but the underlying mechanisms remain unclear. This study investigated the effects and mechanisms of enriched environments on AD pathology and cognitive function in aged APP/PS1 mice.
View Article and Find Full Text PDFDev Biol
September 2025
Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800, Australia. Electronic address:
The N-glycoprotein SCUBE family (Scube1, Scube2, and Scube3) plays diverse roles in vertebrate development and disease, yet many specific functions of the three family members remain unclear. These proteins exhibit broad tissue expression patterns, exist as soluble or membrane-tethered forms, and can form homo- or heteromeric complexes with each other, exerting both short- and long-range effects. Individual functional characterisation proves challenging because overlapping expression patterns and compensatory mechanisms likely obscure specific roles.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Paper and Packaging Technology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India. Electronic address:
Guar gum (GG), a natural galactomannan polysaccharide derived from Cyamopsis tetragonoloba, is gaining popularity as a biodegradable and environmentally friendly packaging material. With the growing demand for sustainable food packaging, stricter regulations prioritize cost efficiency, consumer safety, and environmental impact. It exhibits strong potential for use in packaging films and coatings, offering barrier properties that slow down fruit ripening and reduce post-harvest quality loss.
View Article and Find Full Text PDF