98%
921
2 minutes
20
Memories are assumed to be formed by sets of synapses changing their structural or functional performance. The efficacy of forming new memories declines with advancing age, but the synaptic changes underlying age-induced memory impairment remain poorly understood. Recently, we found spermidine feeding to specifically suppress age-dependent impairments in forming olfactory memories, providing a mean to search for synaptic changes involved in age-dependent memory impairment. Here, we show that a specific synaptic compartment, the presynaptic active zone (AZ), increases the size of its ultrastructural elaboration and releases significantly more synaptic vesicles with advancing age. These age-induced AZ changes, however, were fully suppressed by spermidine feeding. A genetically enforced enlargement of AZ scaffolds (four gene-copies of BRP) impaired memory formation in young animals. Thus, in the Drosophila nervous system, aging AZs seem to steer towards the upper limit of their operational range, limiting synaptic plasticity and contributing to impairment of memory formation. Spermidine feeding suppresses age-dependent memory impairment by counteracting these age-dependent changes directly at the synapse.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5042543 | PMC |
http://dx.doi.org/10.1371/journal.pbio.1002563 | DOI Listing |
CNS Drugs
September 2025
Global Health Neurology Lab, Sydney, NSW, 2150, Australia.
Acute ischemic stroke (AIS) remains a leading cause of mortality and long-term disability globally, with survivors at high risk of recurrent stroke, cardiovascular events, and post-stroke dementia. Statins, while widely used for their lipid-lowering effects, also possess pleiotropic properties, including anti-inflammatory, endothelial-stabilizing, and neuroprotective actions, which may offer added benefit in AIS management. This article synthesizes emerging evidence on statins' dual mechanisms of action and evaluates their role in reducing recurrence, improving survival, and mitigating cognitive decline.
View Article and Find Full Text PDFPsychopharmacology (Berl)
September 2025
División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, 04510, Mexico.
Rationale: One of the earliest changes associated with Alzheimer's disease (AD) is the loss of catecholaminergic terminals in the cortex and hippocampus originating from the Locus Coeruleus (LC). This decline leads to reduced catecholaminergic neurotransmitters in the hippocampus, affecting synaptic plasticity and spatial memory. However, it is unclear whether restoring catecholaminergic transmission in the terminals from the LC may alleviate the spatial memory deficits associated with AD.
View Article and Find Full Text PDFNeurol Res
September 2025
Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
Objectives: This study aimed to investigate the effects of repeated exposure to sevoflurane as an anesthetic agent during various developmental stages, namely neonatal, preadolescent, and adult, on behavioral, synaptic, and neuronal plasticity in male and female Wistar rats.
Methods: Rats were exposed to sevoflurane during three developmental stages: neonatal (PN7), pre-adolescence (PN28), and adulthood (PN90). Behavioral performance was evaluated with the Morris Water Maze.
Appl Neuropsychol Child
September 2025
Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
Objective: Attention deficit hyperactivity disorder (ADHD) is linked to time perception deficits, with theories such as Scalar Expectancy Theory (SET) and Dynamic Attending Theory (DAT) offering different explanations. SET suggests time perception relies on a pacemaker-counter system influenced by working memory, whereas DAT highlights the role of attention in modulating time perception. This study examines the impact of attention, working memory, and motor response on time perception in children with ADHD.
View Article and Find Full Text PDFJ Psychopharmacol
September 2025
Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.
Rapid eye movement sleep (REMS) has historically been associated with anecdotal 'creative insights', possibly due to the fantastical and ostensibly illuminating nature of its associated phenomena (dreams). REMS, characterised by rapid eye movements, muscle atonia, and high-energy neuronal activity, has been linked to memory consolidation and information processing, particularly regarding the formation of novel associations or reintegration of consolidated memories into new cognitive networks. However, studies in these domains have largely used methodology which deprived subjects (animal or human) of REMS, rather than enhanced it.
View Article and Find Full Text PDF