Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Arabidopsis thaliana ACYL-COA-BINDING PROTEIN6 (AtACBP6) encodes a cytosolic 10-kDa AtACBP. It confers freezing tolerance in transgenic Arabidopsis, possibly by its interaction with lipids as indicated by the binding of acyl-CoA esters and phosphatidylcholine to recombinant AtACBP6. Herein, transgenic Arabidopsis transformed with an AtACBP6 promoter-driven β-glucuronidase (GUS) construct exhibited strong GUS activity in the vascular tissues. Immunoelectron microscopy using anti-AtACBP6 antibodies showed AtACBP6 localization in the phloem especially in the companion cells and sieve elements. Also, the presence of gold grains in the plasmodesmata indicated its potential role in systemic trafficking. The AtACBP6 protein, but not its mRNA, was found in phloem exudate of wild-type Arabidopsis. Fatty acid profiling using gas chromatography-mass spectrometry revealed an increase in the jasmonic acid (JA) precursor, 12-oxo-cis,cis-10,15-phytodienoic acid (cis-OPDA), and a reduction in JA and/or its derivatives in acbp6 phloem exudates in comparison to the wild type. Quantitative real-time PCR showed down-regulation of COMATOSE (CTS) in acbp6 rosettes suggesting that AtACBP6 affects CTS function. AtACBP6 appeared to affect the content of JA and/or its derivatives in the sieve tubes, which is consistent with its role in pathogen-defense and in its wound-inducibility of AtACBP6pro::GUS. Taken together, our results suggest the involvement of AtACBP6 in JA-biosynthesis in Arabidopsis phloem tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11103-016-0541-0DOI Listing

Publication Analysis

Top Keywords

atacbp6
8
transgenic arabidopsis
8
and/or derivatives
8
arabidopsis
6
phloem
5
arabidopsis acyl-coa-binding
4
acyl-coa-binding protein
4
protein acbp6
4
acbp6 localizes
4
localizes phloem
4

Similar Publications

Background: Rapid-cycling Brassica napus (B. napus-RC) has potential as a rapid trait testing system for canola (B. napus) because its life cycle is completed within 2 months while canola usually takes 4 months, and it is susceptible to the same range of diseases and abiotic stress as canola.

View Article and Find Full Text PDF

As plant seed oils provide animals with essential fatty acids (FAs), genes that regulate plant lipid metabolism have been used in genetic manipulation to improve dietary seed oil composition and benefit human health. Herein, the cytosolic acyl-CoA-binding proteins (AtACBPs), AtACBP4, AtACBP5, and AtACBP6 were shown to play a role in determining seed oil content by analysis of ( and ) seed oil content in comparison with the Col-0 wild type (WT). Triacylglycerol (TAG) composition in electrospray ionization-mass spectrometer (ESI-MS) analysis on seed oil showed a reduction (-50%) of C58-TAGs in comparison with the WT.

View Article and Find Full Text PDF

In Arabidopsis thaliana, six acyl-CoA-binding proteins (ACBPs), designated as AtACBP1 to AtACBP6, have been identified to function in various events related to plant stress and development. The 10-kDa AtACBP6 is the smallest in this protein family, and recombinant AtACBP6 interacts with lipids in vitro by binding to acyl-CoA esters and phosphatidylcholine. Using anti-AtACBP6 antibodies in immunoelectron microscopy, we have localized AtACBP6 in the Arabidopsis phloem.

View Article and Find Full Text PDF

We herein demonstrated two of the Arabidopsis acyl-CoA-binding proteins (ACBPs), AtACBP4 and AtACBP5, both function in floral lipid metabolism and they may possibly play complementary roles in Arabidopsis microspore-to-pollen development. Histological analysis on transgenic Arabidopsis expressing β-glucuronidase driven from the AtACBP4 and AtACBP5 promoters, as well as, qRTPCR analysis revealed that AtACBP4 was expressed at stages 11-14 in the mature pollen, while AtACBP5 was expressed at stages 7-10 in the microspores and tapetal cells. Immunoelectron microscopy using AtACBP4- or AtACBP5-specific antibodies further showed that AtACBP4 and AtACBP5 were localized in the cytoplasm.

View Article and Find Full Text PDF

Arabidopsis thaliana ACYL-COA-BINDING PROTEIN6 (AtACBP6) encodes a cytosolic 10-kDa AtACBP. It confers freezing tolerance in transgenic Arabidopsis, possibly by its interaction with lipids as indicated by the binding of acyl-CoA esters and phosphatidylcholine to recombinant AtACBP6. Herein, transgenic Arabidopsis transformed with an AtACBP6 promoter-driven β-glucuronidase (GUS) construct exhibited strong GUS activity in the vascular tissues.

View Article and Find Full Text PDF