Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Clostridium pasteurianum is emerging as a prospective host for the production of biofuels and chemicals, and has recently been shown to directly consume electric current. Despite this growing biotechnological appeal, the organism's genetics and central metabolism remain poorly understood. Here we present a concurrent genome sequence for the C. pasteurianum type strain and provide extensive genomic analysis of the organism's defence mechanisms and central fermentative metabolism. Next generation genome sequencing produced reads corresponding to spontaneous excision of a novel phage, designated φ6013, which could be induced using mitomycin C and detected using PCR and transmission electron microscopy. Methylome analysis of sequencing reads provided a near-complete glimpse into the organism's restriction-modification systems. We also unveiled the chief C. pasteurianum Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) locus, which was found to exemplify a Type I-B system. Finally, we show that C. pasteurianum possesses a highly complex fermentative metabolism whereby the metabolic pathways enlisted by the cell is governed by the degree of reductance of the substrate. Four distinct fermentation profiles, ranging from exclusively acidogenic to predominantly alcohologenic, were observed through redox consideration of the substrate. A detailed discussion of the organism's central metabolism within the context of metabolic engineering is provided.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5027557PMC
http://dx.doi.org/10.1038/srep26228DOI Listing

Publication Analysis

Top Keywords

fermentative metabolism
12
central fermentative
8
clostridium pasteurianum
8
central metabolism
8
metabolism
5
pasteurianum
5
genome-directed analysis
4
analysis prophage
4
prophage excision
4
excision host
4

Similar Publications

Ethnic fermented foods represent a significant repository for discovering novel probiotic entities. These fermented foods, entrenched in indigenous practices, have conserved a distinct microbiota through generations. Exploration of these fermented foods could yield microbial consortia capable of transforming human health.

View Article and Find Full Text PDF

Trichoderma species exhibit remarkable versatility in adaptability and in occupying habitats with lifestyles ranging from mycoparasitism and saprotrophy to endophytism. In this study, we present the first high-quality whole-genome assembly and annotation of T. lixii using Illumina HiSeq technology to explore the mechanisms of endophytic lifestyle and plant colonization.

View Article and Find Full Text PDF

Currently, there is an increasing use of whole-genome sequencing (WGS) studies to investigate the molecular taxonomy, metabolic properties, enzyme capabilities, and bioactive substances of lactic acid bacteria (LAB) species. In this study, the genome of strain Pediococcus pentosaceus BBS1 was sequenced using the Illumina HiSeq. 2500 platform to determine its classification, annotate its main features, and evaluate its safety characteristics.

View Article and Find Full Text PDF

Methane (CH), carbon dioxide (CO), and oxygen (O) are the major gases produced by dairy cattle as a result of rumen fermentation and metabolism, and thus, their concentrations are frequently measured as a way of estimating heat production and energy metabolism. A well-utilized method of measuring gas consumption and production to estimate heat production is indirect calorimetry, which requires bags to retain the sampled gases until analysis. The objective of this study was to determine the ability of a polyvinyl fluoride gas bag (PF) and a multilayer fabrication gas bag containing an aluminum layer (NAP) to maintain respiratory gas composition in comparison to a polyethylene terephthalate bag (PET).

View Article and Find Full Text PDF

Ergothioneine as a promising natural antioxidant: bioactivities, therapeutic potential, and industrial applications.

Food Funct

September 2025

Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China.

Ergothioneine (EGT) is a naturally occurring thiol-containing amino acid derivative synthesized by certain fungi and bacteria, with humans acquiring it exclusively through dietary intake. It has gained increasing attention due to its exceptional antioxidant, cytoprotective, and metal-chelating properties. EGT shows high stability under physiological conditions and can accumulate in specific tissues the highly selective transporter OCTN1.

View Article and Find Full Text PDF