Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In non-alcoholic fatty liver disease (NAFLD), lipid build-up and the resulting damage is known to occur more severely in pericentral cells. Due to the complexity of studying individual regions of the sinusoid, the causes of this zone specificity and its implications on treatment are largely ignored. In this study, a computational model of liver glucose and lipid metabolism is presented which treats the sinusoid as the repeating unit of the liver rather than the single hepatocyte. This allows for inclusion of zonated enzyme expression by splitting the sinusoid into periportal to pericentral compartments. By simulating insulin resistance (IR) and high intake diets leading to the development of steatosis in the model, we identify key differences between periportal and pericentral cells accounting for higher susceptibility to pericentral steatosis. Secondly, variation between individuals is seen in both susceptibility to steatosis and in its development across the sinusoid. Around 25% of obese individuals do not show excess liver fat, whilst 16% of lean individuals develop NAFLD. Furthermore, whilst pericentral cells tend to show higher lipid levels, variation is seen in the predominant location of steatosis from pericentral to pan-sinusoidal or azonal. Sensitivity analysis was used to identify the processes which have the largest effect on both total hepatic triglyceride levels and on the sinusoidal location of steatosis. As is seen in vivo, steatosis occurs when simulating IR in the model, predominantly due to increased uptake, along with an increase in de novo lipogenesis. Additionally, concentrations of glucose intermediates including glycerol-3-phosphate increased when simulating IR due to inhibited glycogen synthesis. Several differences between zones contributed to a higher susceptibility to steatosis in pericentral cells in the model simulations. Firstly, the periportal zonation of both glycogen synthase and the oxidative phosphorylation enzymes meant that the build-up of glucose intermediates was less severe in the periportal hepatocyte compartments. Secondly, the periportal zonation of the enzymes mediating β-oxidation and oxidative phosphorylation resulted in excess fats being metabolised more rapidly in the periportal hepatocyte compartments. Finally, the pericentral expression of de novo lipogenesis contributed to pericentral steatosis when additionally simulating the increase in sterol-regulatory element binding protein 1c (SREBP-1c) seen in NAFLD patients in vivo. The hepatic triglyceride concentration was predicted to be most sensitive to inter-individual variation in the activity of enzymes which, either directly or indirectly, determine the rate of free fatty acid (FFA) oxidation. The concentration was most strongly dependent on the rate constants for β-oxidation and oxidative phosphorylation. It also showed moderate sensitivity to the rate constants for processes which alter the allosteric inhibition of β-oxidation by acetyl-CoA. The predominant sinusoidal location of steatosis meanwhile was most sensitive variations in the zonation of proteins mediating FFA uptake or triglyceride release as very low density lipoproteins (VLDL). Neither the total hepatic concentration nor the location of steatosis showed strong sensitivity to variations in the lipogenic rate constants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5025084PMC
http://dx.doi.org/10.1371/journal.pcbi.1005105DOI Listing

Publication Analysis

Top Keywords

pericentral cells
16
location steatosis
16
oxidative phosphorylation
12
rate constants
12
steatosis
11
pericentral
9
computational model
8
periportal pericentral
8
higher susceptibility
8
pericentral steatosis
8

Similar Publications

Spatiotemporal liver dynamics shape hepatocellular heterogeneity and impact in vivo gene engineering.

J Hepatol

July 2025

San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita Salute San Raffaele University, Milan, Italy. Electronic address:

Background & Aims: Hepatocytes are the liver's main functional cells and are key targets for in vivo gene therapy to treat monogenic diseases. Integrating the transgene into the genome is critical for long-term expression from a single early-life dose, which is achievable via integrating vectors or genome editing. To ensure persistence through liver growth and cell turnover, it is also necessary to target the hepatocytes driving these processes.

View Article and Find Full Text PDF

The development of hepaticmodels that replicate the physiological characteristics of liver tissue is critical for the accurate translation of drug test results. Current models often fail to mimic the spatial zonation by an oxygen concentration gradient in the hepatic acinus, limiting their ability to predict drug-induced hepatotoxicity. This study aimed to develop a hepatic zonation chip (H-chip) that replicates the oxygen gradient of the hepatic acinus, enhancing physiological relevance for drug testing applications.

View Article and Find Full Text PDF

Understanding protein distribution patterns across tissue architecture is crucial for deciphering organ function in health and disease. Here, we applied single-cell Deep Visual Proteomics to perform spatially-resolved proteome analysis of individual cells in native tissue. We combined this with a novel strategic cell selection pipeline and a continuous protein gradient mapping framework to investigate larger clinical cohorts.

View Article and Find Full Text PDF

Hepatocytes are organized along a spatial axis between the portal triad and the central vein to form functionally repetitive units known as lobules. The hepatocytes perform distinct metabolic functions depending on their location within the lobule. Single-cell analysis of hepatocytes across the liver lobule demonstrates that gluconeogenic gene expression is relatively low in the fed state and gradually increases in the periportal hepatocytes during the initial fasting period.

View Article and Find Full Text PDF

hESCs-derived Organoids Achieve Liver Zonation Features through LSEC Modulation.

Adv Sci (Weinh)

May 2025

School of Biomedical Engineering, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.

Liver zonation, essential for diverse physiological functions, is lacking in existing organoid models, hindering their ability to recapitulate liver development and pathogenesis. Addressing this gap, this work explores the feasibility of achieving zonated organoid by co-culturing human embryonic stem cells (hESCs) derived hepatocytes (HEP) with hESCs derived liver sinusoidal endothelial cells (LSECs) exhibiting characteristics of either the liver lobule's pericentral (PC) or periportal (PP) regions. Introducing zonated LSECs with variable WNT2 signaling subtly regulate hepatocyte zonation, resulting in noticeable metabolic function changes.

View Article and Find Full Text PDF