A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Toward a Designable Extracellular Matrix: Molecular Dynamics Simulations of an Engineered Laminin-Mimetic, Elastin-Like Fusion Protein. | LitMetric

Toward a Designable Extracellular Matrix: Molecular Dynamics Simulations of an Engineered Laminin-Mimetic, Elastin-Like Fusion Protein.

Biomacromolecules

Departments of †Chemical Engineering and ‡Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States.

Published: October 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Native extracellular matrices (ECMs) exhibit networks of molecular interactions between specific matrix proteins and other tissue components. Guided by these naturally self-assembling supramolecular systems, we have designed a matrix-derived protein chimera that contains a laminin globular-like (LG) domain fused to an elastin-like polypeptide (ELP). This bipartite design offers a flexible protein engineering platform: (i) laminin is a key multifunctional component of the ECM in human brains and other neural tissues, making it an ideal bioactive component of our fusion, and (ii) ELPs, known to be well-tolerated in vivo, provide a self-assembly scaffold with tunable physicochemical (viscoelastic, thermoresponsive) properties. Experimental characterization of novel proteins is resource-intensive, and examining many conceivable designs would be a formidable challenge in the laboratory. Computational approaches offer a way forward: molecular dynamics (MD) simulations can be used to analyze the structural/physical behavior of candidate LG-ELP fusion proteins, particularly in terms of conformational properties salient to our design goals, such as assembly propensity in a temperature range spanning the inverse temperature transition. As a first step in examining the physical characteristics of a model LG-ELP fusion protein, including its temperature-dependent structural behavior, we simulated the protein over a range of physiologically relevant temperatures (290-320 K). We find that the ELP region, built upon the archetypal (VPGXG) scaffold, is quite flexible and has a propensity for β-rich secondary structures near physiological (310-315 K) temperatures. Our trajectories indicate that the temperature-dependent burial of hydrophobic patches in the ELP region, coupled to the local water structure dynamics and mediated by intramolecular contacts between aliphatic side chains, correlates with the temperature-dependent structural transitions in known ELP polymers. Because of the link between compaction of ELP segments into β-rich structures and differential solvation properties of this region, we posit that future variation of ELP sequence and composition can be used to systematically alter the phase transition profiles and, thus, the general functionality of our LG-ELP fusion protein system.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.6b00951DOI Listing

Publication Analysis

Top Keywords

fusion protein
12
lg-elp fusion
12
molecular dynamics
8
dynamics simulations
8
temperature-dependent structural
8
elp region
8
protein
6
elp
6
fusion
5
designable extracellular
4

Similar Publications