98%
921
2 minutes
20
Background: The white-rot Agaricomycetes species Phlebia radiata is an efficient wood-decaying fungus degrading all wood components, including cellulose, hemicellulose, and lignin. We cultivated P. radiata in solid state cultures on spruce wood, and extended the experiment to 6 weeks to gain more knowledge on the time-scale dynamics of protein expression upon growth and wood decay. Total proteome and transcriptome of P. radiata were analyzed by peptide LC-MS/MS and RNA sequencing at specific time points to study the enzymatic machinery on the fungus' natural growth substrate.
Results: According to proteomics analyses, several CAZy oxidoreductase class-II peroxidases with glyoxal and alcohol oxidases were the most abundant proteins produced on wood together with enzymes important for cellulose utilization, such as GH7 and GH6 cellobiohydrolases. Transcriptome additionally displayed expression of multiple AA9 lytic polysaccharide monooxygenases indicative of oxidative cleavage of wood carbohydrate polymers. Large differences were observed for individual protein quantities at specific time points, with a tendency of enhanced production of specific peroxidases on the first 2 weeks of growth on wood. Among the 10 class-II peroxidases, new MnP1-long, characterized MnP2-long and LiP3 were produced in high protein abundances, while LiP2 and LiP1 were upregulated at highest level as transcripts on wood together with the oxidases and one acetyl xylan esterase, implying their necessity as primary enzymes to function against coniferous wood lignin to gain carbohydrate accessibility and fungal growth. Majority of the CAZy encoding transcripts upregulated on spruce wood represented activities against plant cell wall and were identified in the proteome, comprising main activities of white-rot decay.
Conclusions: Our data indicate significant changes in carbohydrate-active enzyme expression during the six-week surveillance of P. radiata growing on wood. Response to wood substrate is seen already during the first weeks. The immediate oxidative enzyme action on lignin and wood cell walls is supported by detected lignin substructure sidechain cleavages, release of phenolic units, and visual changes in xylem cell wall ultrastructure. This study contributes to increasing knowledge on fungal genetics and lignocellulose bioconversion pathways, allowing us to head for systems biology, development of biofuel production, and industrial applications on plant biomass utilizing wood-decay fungi.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5011852 | PMC |
http://dx.doi.org/10.1186/s13068-016-0608-9 | DOI Listing |
Environ Monit Assess
September 2025
College of Ecological and Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China.
The rapid development of industry and agriculture has led to a significant increase in the toxicity and pollution of cadmium (Cd) and lead (Pb) in soil. Consequently, soil remediation employing biochar or modified biochar has emerged as a cost-effective and environmentally sustainable approach to address the issue of heavy metal (HM) ion pollution. PEI-functionalization biochar (PBC) derived from corn straw (PBCC), wood straw (PBCW), and rice straw (PBCR) was synthesized to immobilize Cd and Pb in contaminated acidic yellow soil.
View Article and Find Full Text PDFPostgrad Med
September 2025
Department of Medicine, Summa Health, Akron, OH, USA.
Hemophagocytic lymphohistiocytosis (HLH) is an increasingly recognized disorder of immune hyperactivity that often leads to multiorgan failure and death. In adults, HLH is usually triggered by infection, malignancy, or an autoimmune/autoinflammatory disorder that precipitates a destructive cytokine storm. Treatment aims to deescalate the hyperimmunity by treating the triggers while interfering with the immune pathways that cause the morbidity.
View Article and Find Full Text PDFNeurotherapeutics
September 2025
RWJMS Institute for Neurological Therapeutics and Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway NJ08854, USA. Electronic address:
Neurobiol Dis
September 2025
F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, MA, USA; Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA.
CDKL5 deficiency disorder (CDD) is a rare developmental and epileptic encephalopathy resulting from variants in cyclin-dependent kinase-like 5 (CDKL5) that lead to impaired kinase activity or loss of function. CDD is one of the most common genetic etiologies identified in epilepsy cohorts. To study how CDKL5 variants impact human neuronal activity, gene expression and morphology, CDD patient-derived induced pluripotent stem cells and their isogenic controls were differentiated into excitatory neurons using either an NGN2 induction protocol or a guided cortical organoid differentiation.
View Article and Find Full Text PDFTransplant Cell Ther
September 2025
Fred Hutchinson Cancer Center, Seattle, WA, USA; University of Washington, Seattle, WA, USA.
Background: BCMA-directed chimeric antigen receptor (CAR)-T cell therapy represents a major therapeutic breakthrough for relapsed/refractory multiple myeloma (RRMM), offering deep and durable responses in heavily pretreated patients. However, a subset of patients experience early relapse or fail to respond, highlighting the need for strategies to enhance efficacy. Gamma-secretase inhibitors (GSIs) have been shown to increase surface BCMA expression on malignant plasma cells and may potentiate the activity of BCMA CAR-T cells, particularly in patients with low baseline BCMA antigen density.
View Article and Find Full Text PDF