Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The advent of two-photon microscopy now reveals unprecedented, detailed spatio-temporal data on cellular motility and interactions in vivo. Understanding cellular motility patterns is key to gaining insight into the development and possible manipulation of the immune response. Computational simulation has become an established technique for understanding immune processes and evaluating hypotheses in the context of experimental data, and there is clear scope to integrate microscopy-informed motility dynamics. However, determining which motility model best reflects in vivo motility is non-trivial: 3D motility is an intricate process requiring several metrics to characterize. This complicates model selection and parameterization, which must be performed against several metrics simultaneously. Here we evaluate Brownian motion, Lévy walk and several correlated random walks (CRWs) against the motility dynamics of neutrophils and lymph node T cells under inflammatory conditions by simultaneously considering cellular translational and turn speeds, and meandering indices. Heterogeneous cells exhibiting a continuum of inherent translational speeds and directionalities comprise both datasets, a feature significantly improving capture of in vivo motility when simulated as a CRW. Furthermore, translational and turn speeds are inversely correlated, and the corresponding CRW simulation again improves capture of our in vivo data, albeit to a lesser extent. In contrast, Brownian motion poorly reflects our data. Lévy walk is competitive in capturing some aspects of neutrophil motility, but T cell directional persistence only, therein highlighting the importance of evaluating models against several motility metrics simultaneously. This we achieve through novel application of multi-objective optimization, wherein each model is independently implemented and then parameterized to identify optimal trade-offs in performance against each metric. The resultant Pareto fronts of optimal solutions are directly contrasted to identify models best capturing in vivo dynamics, a technique that can aid model selection more generally. Our technique robustly determines our cell populations' motility strategies, and paves the way for simulations that incorporate accurate immune cell motility dynamics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5010290PMC
http://dx.doi.org/10.1371/journal.pcbi.1005082DOI Listing

Publication Analysis

Top Keywords

model selection
12
motility
12
motility dynamics
12
cellular motility
8
vivo motility
8
metrics simultaneously
8
brownian motion
8
lévy walk
8
translational turn
8
turn speeds
8

Similar Publications

Objective: To develop and validate a nomogram model for predicting the risk of hyperuricemia (HUA) in perimenopausal women.

Methods: In this study, physical examination information of perimenopausal women was collected at the First Affiliated Hospital of University of Science and Technology of China. We utilized the Least Absolute Shrinkage and Selection Operator (Lasso) and binary logistic regression to investigate the risk factors of HUA among perimenopausal women.

View Article and Find Full Text PDF

Background: In clinical practice, digital subtraction angiography (DSA) often suffers from misregistration artifact resulting from voluntary, respiratory, and cardiac motion during acquisition. Most prior efforts to register the background DSA mask to subsequent postcontrast images rely on key point registration using iterative optimization, which has limited real-time application.

Purpose: Leveraging state-of-the-art, unsupervised deep learning, we aim to develop a fast, deformable registration model to substantially reduce DSA misregistration in craniocervical angiography without compromising spatial resolution or introducing new artifacts.

View Article and Find Full Text PDF

NSG-SGM3 humanized mouse models are well-suited for studying human immune physiology but are technically challenging and expensive. We previously characterized a simplified NSG-SGM3 mouse, engrafted with human donor CD34 hematopoietic stem cells without receiving prior bone marrow ablation or human secondary lymphoid tissue implantation, that still retains human mast cell- and basophil-dependent passive anaphylaxis responses. Its capacities for human antibody production and human B cell maturation, however, remain unknown.

View Article and Find Full Text PDF

Objective: To investigate the prevalence of dry eye disease (DED) among children and adolescents aged 9 to 19 years in Fengyang County, and to explore the associations of sleep duration and social jetlag with DED, with the aim of providing scientific evidence for sleep-based interventions to prevent DED in this population.

Methods: Between November and December 2023, 14 primary and secondary schools were randomly selected in Fengyang County, Chuzhou City, Anhui Province, China. Students from Grade 4 to Grade 12 (aged 9-19 years) were invited to participate.

View Article and Find Full Text PDF

Objective: Due to its inherent high instability, the selection of fixation strategies for unilateral Denis type II sacral fractures remains a controversial challenge in the field of traumatic orthopedics. This study focuses on unilateral Denis type II sacral fractures. By applying three different fixation methods, it aims to explore their biomechanical properties and provide a theoretical basis for optimizing clinical fixation protocols.

View Article and Find Full Text PDF