98%
921
2 minutes
20
Early life experiences affect the formation of neuronal networks, which can have a profound impact on brain function and behavior later in life. Previous work has shown that mice exposed to excessive sensory stimulation during development are hyperactive and novelty seeking, and display impaired cognition compared with controls. In this study, we addressed the issue of whether excessive sensory stimulation during development could alter behaviors related to addiction and underlying circuitry in CD-1 mice. We found that the reinforcing properties of cocaine were significantly enhanced in mice exposed to excessive sensory stimulation. Moreover, although these mice displayed hyperactivity that became more pronounced over time, they showed impaired persistence of cocaine-induced locomotor sensitization. These behavioral effects were associated with alterations in glutamatergic transmission in the nucleus accumbens and amygdala. Together, these findings suggest that excessive sensory stimulation in early life significantly alters drug reward and the neural circuits that regulate addiction and attention deficit hyperactivity. These observations highlight the consequences of early life experiences and may have important implications for children growing up in today's complex technological environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4994069 | PMC |
http://dx.doi.org/10.1523/ENEURO.0199-16.2016 | DOI Listing |
Elife
September 2025
Department of Neuroscience, Washington University School of Medicine, St Louis, United States.
Peripheral sensory neurons regenerate their axons after injury to regain function, but this ability declines with age. The mechanisms behind this decline are not fully understood. While excessive production of endothelin 1 (ET-1), a potent vasoconstrictor, is linked to many diseases that increase with age, the role of ET-1 and its receptors in axon regeneration is unknown.
View Article and Find Full Text PDFFood Res Int
November 2025
Department of Agriculture and Forest Sciences (DAFNE), Tuscia University, via S. Camillo de Lellis snc, 01100 Viterbo, Italy.
The demand for natural sweeteners as alternatives to sucrose is growing rapidly, driving research into enzymatic bioconversion methods for more efficient production. Glycyrrhizin (GL) is approximately 190 times sweeter than sucrose, but its excessive consumption has been linked to adverse health effects. Its hydrolysis yields glycyrrhetic acid 3-O-mono-β-D-glucuronide (GAMG), a compound nearly 1000 times sweeter than sucrose and with improved sensory and solubility properties.
View Article and Find Full Text PDFMozzarella is a white, soft, fermented cheese that is often recognized for its stretchability and typically contains approximately 40% total fat (dry basis), a considerable portion of which is saturated fat. Low-fat mozzarella cheese (LFMC) has started to increase in popularity among health-conscious consumers. Unfortunately, the inadequate meltability and rubbery texture of LFMC make it undesirable for many consumers.
View Article and Find Full Text PDFInt Immunopharmacol
September 2025
Department of Orthopaedics, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China. Electronic address:
Osteoarthritis (OA) is a degenerative joint disease associated with imbalanced subchondral bone remodeling, and there is currently no curative treatment available. In OA, excessive osteoclast activity leads to bone loss and inflammatory responses. Dimethyl fumarate (DMF), an Nrf2 activator already used in treating psoriasis and multiple sclerosis, may alleviate OA by suppressing oxidative stress and osteoclastogenesis.
View Article and Find Full Text PDFFront Aging Neurosci
August 2025
Laboratory of Sensory Neurobiology, School of Basic Medical Sciences, Hebei University, Baoding, China.
Age-related hearing loss (ARHL), or presbycusis, is characterized by a progressive decline in binaural auditory sensitivity, particularly affecting high-frequency hearing and sound localization. The pathogenesis of ARHL is still unclear, correspondingly reflected in a lack of clinically effective intervention strategies. Recent advancements in audiology and neurobiology have illuminated the black box of the pathogenesis of ARHL.
View Article and Find Full Text PDF