98%
921
2 minutes
20
Methionine metabolism is critical during development with significant requirements for protein synthesis and transmethylation reactions. However, separate requirements of methionine for protein synthesis and transmethylation are difficult to define because after transmethylation, demethylated methionine is either irreversibly oxidized to cysteine during transsulfuration, or methionine is regenerated by the dietary methyl donors, choline (via betaine) or folate during remethylation. We hypothesized that remethylation contributes significantly to methionine availability and affects partitioning between protein and transmethylation. 4-8-day-old neonatal piglets were fed a diet devoid (MD-) (n = 8) or replete (MS+) (n = 8) of folate, choline and betaine to limit remethylation. After 5 days, dietary methionine was reduced to 80 % of requirement in both groups of piglets to ensure methionine availability was limited. On day 7, an intragastric infusion of [C]methionine and [H-methyl]methionine was administered to measure methionine cycle flux. In MD- piglets, in vivo remethylation was 60 % lower despite 23-fold greater conversion of choline to betaine (P < 0.05) and transmethylation was 56 % lower (P < 0.05), suggesting dietary methyl donors spared 425 µmol methyl/day for transmethylation. The priority of protein synthesis versus transmethylation was clear during MD- feeding (P < 0.05), as an additional 6 % of methionine flux was for protein synthesis in those piglets (P < 0.05). However, whole body transsulfuration was unaffected in vivo despite reduced in vitro cystathionine-β-synthase capacity in MD- piglets (P < 0.05). Our data show that remethylation contributes significantly to methionine availability and that transmethylation is sacrificed to maintain protein synthesis when methionine is limiting in neonates, which should be considered when determining the methionine requirement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00726-016-2317-x | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240.
Major depressive disorder affects millions worldwide, yet current treatments require prolonged administration. In contrast, ketamine produces rapid antidepressant effects by blocking spontaneous N-Methyl-D-Aspartate (NMDA) receptor signaling, which lifts the suppression of protein synthesis and triggers homeostatic synaptic plasticity. Here, we identify a parallel signaling pathway involving metabotropic glutamate receptor 5 (mGluR5) that promotes rapid antidepressant-like effects.
View Article and Find Full Text PDFJ Appl Genet
September 2025
Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-032, Katowice, Poland.
Mechanical wounding triggers rapid transcriptional and hormonal reprogramming in plants, primarily driven by jasmonate (JA) signalling. While the role of JA, ethylene, and salicylic acid in wound responses is well characterised, the contribution of strigolactones (SLs) remains largely unexplored. Here, for the first time, it was shown that SLs modulate wound-induced transcriptional dynamics in Arabidopsis thaliana.
View Article and Find Full Text PDFAmino Acids
September 2025
Colorectal Research Center, Iran University of Medical Sciences, Tehran, 1445613131, Iran.
Anal fissure causes pain and bleeding during or after bowel movements, significantly impacting individuals' quality of life. Current treatments aim to interrupt this cycle but have associated risks and limitations. The emergence of arginine, crucial for protein creation and nitric oxide (NO) production, presents an intriguing therapeutic avenue by the impact on reducing anal sphincter pressure and enhancing anoderm blood flow, due to its roles in vasodilation, anti-inflammatory responses, and collagen synthesis, which can promote wound healing and highlighting its potential as an alternative therapy.
View Article and Find Full Text PDFFASEB J
September 2025
Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials
The onset and progression of periodontitis are closely related to metabolic reprogramming in the periodontal microenvironment, with osteoclasts playing a critical role in tissue destruction. Single-cell RNA sequencing (scRNA-seq) of periodontal tissues from healthy individuals and patients with severe chronic periodontitis revealed a significant increase in the expression of mitochondrial-related genes during osteoclast differentiation, suggesting the critical role of mitochondrial function in this process. This study investigates the potential of the novel mitoribosome-targeting antibiotic radezolid in inhibiting osteoclast differentiation.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, United States.
DDX6 is known to repress messenger RNA (mRNA) translation and promote mRNA decay in microRNA-mediated silencing. In embryonic stem cells (ESCs), DDX6 primarily functions at the translation level, independent of mRNA destabilization; however, the precise molecular mechanism of how DDX6 represses translation remains unclear. Here, we identify DDX3X as a key downstream target of DDX6-mediated translational repression in ESCs.
View Article and Find Full Text PDF