98%
921
2 minutes
20
Post-translational modifications (PTMs) strongly influence the structure and function of proteins. Lysine side chain acetylation is one of the most widespread PTMs, and it plays a major role in several physiological and pathological mechanisms. Protein acetylation may be detected by mass spectrometry (MS), but the use of monoclonal antibodies (mAbs) is a useful and cheaper option. Here, we explored the feasibility of generating mAbs against single or multiple acetylations within the context of a specific sequence. As a model, we used the unstructured N-terminal domain of APE1, which is acetylated on Lys27, Lys31, Lys32 and Lys35. As immunogen, we used a peptide mixture containing all combinations of single or multi-acetylated variants encompassing the 24-39 protein region. Targeted screening of the resulting clones yielded mAbs that bind with high affinity to only the acetylated APE1 peptides and the acetylated protein. No binding was seen with the non-acetylated variant or unrelated acetylated peptides and proteins, suggesting a high specificity for the APE1 acetylated molecules. MAbs could not finely discriminate between the differently acetylated variants; however, they specifically bound the acetylated protein in mammalian cell extracts and in intact cells and tissue slices from both breast cancers and from a patient affected by idiopathic dilated cardiomyopathy. The data suggest that our approach is a rapid and cost-effective method to generate mAbs against specific proteins modified by multiple acetylations or other PTMs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5098450 | PMC |
http://dx.doi.org/10.1080/19420862.2016.1225643 | DOI Listing |
PLoS One
September 2025
Geriatric Medicine Center, Department of Nursing, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
Background: In recent years, with the expanding use of novel therapeutics such as immune checkpoint inhibitors and monoclonal antibodies, reports of drug-induced vitiligo have been increasing. This study aimed to identify drugs associated with vitiligo using the FDA Adverse Event Reporting System (FAERS).
Methods: A retrospective disproportionality analysis was performed on FAERS reports from the first quarter of 2004 to the fourth quarter of 2024.
BioDrugs
September 2025
Department of Nephrology, Instituto de Investigación Hospital "12 de Octubre" (imas12), Avda. De Córdoba s/n, 28041, Madrid, Spain.
Anti-CD20 monoclonal antibodies are gaining clinical relevance in the nephrology community due to their demonstrated efficacy and favorable safety profiles across short-, medium-, and long-term use. Initially developed for hematologic malignancies and multiple sclerosis, B-cell depletion therapies are now being investigated across a broader spectrum of autoimmune diseases, including glomerulopathies, both with and without associated podocytopathy. Recent advances have led to the development of novel anti-CD20 agents that are being used not only as potential alternatives to corticosteroids but also as adjunctive therapies in complex clinical settings.
View Article and Find Full Text PDFVestn Oftalmol
September 2025
Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia.
Unlabelled: Retinoblastoma is a malignant retinal tumor characterized by an aggressive clinical course, with frequent recurrences and the emergence of new foci even during chemotherapy.
Objective: This study investigated the subpopulation composition of peripheral blood lymphocytes in children with newly diagnosed untreated retinoblastoma.
Material And Methods: A total of 24 children (48 eyes) were examined between December 20, 2023, and September 1, 2024; retinoblastoma was diagnosed in 28 eyes.
mBio
September 2025
Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, Illinois, USA.
infection is a frequent cause of sepsis in humans, a disease associated with high mortality and without specific intervention. Clumping factor A (ClfA) displayed on the bacterial surface plays a key role in promoting replication during invasive disease. Decades of research have pointed to a wide array of ligands engaged by ClfA.
View Article and Find Full Text PDFBiomacromolecules
September 2025
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, Georgia 30332, United States.
The COVID-19 pandemic has demonstrated the need for rapid, flexible, and readily adaptable treatment options for future pandemic preparedness. Due to the speed at which viruses like SARS-CoV-2 mutate, the customary approach of using highly specific monoclonal antibodies as neutralization therapies is challenging, given their size, production complexity, and cost. Here, we leveraged rational protein design to create fusion proteins from small, antibody-mimetic proteins, Designed Ankyrin Repeat Proteins (DARPins) and a self-assembling hexameric coiled coil (CC-HEX).
View Article and Find Full Text PDF