Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

After complete spinal cord injury (SCI), activation during attempted movement of paralyzed limbs is sharply reduced, but after incomplete SCI-the more common form of human injury-it is unknown how attempts to move voluntarily are accompanied by activation of brain motor and sensory networks. Here, we assessed brain activation during ankle movement in subjects with incomplete SCI, among whom voluntary motor function is partially preserved. Adults with incomplete SCI (n = 20) and healthy controls (n = 15) underwent functional magnetic resonance imaging that alternated rest with 0.3-Hz right ankle dorsiflexion. In both subject groups, ankle movement was associated with bilateral activation of primary and secondary sensory and motor areas, with significantly (p < 0.001) greater activation in subjects with SCI within right hemisphere areas, including primary sensorimotor cortex and pre-motor cortex. This result was further evaluated using linear regression analysis with respect to core clinical variables. Poorer locomotor function correlated with larger activation within several right hemisphere areas, including pre- and post-central gyri, possibly reflecting increased movement complexity and effort, whereas longer time post-SCI was associated with larger activation in left post-central gyrus and bilateral supplementary motor area, which may reflect behaviorally useful adaptations. The results indicate that brain adaptations after incomplete SCI differ sharply from complete SCI, are related to functional behavioral status, and evolve with increasing time post-SCI. The results suggest measures that might be useful for understanding and treating incomplete SCI in human subjects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5286551PMC
http://dx.doi.org/10.1089/neu.2016.4503DOI Listing

Publication Analysis

Top Keywords

spinal cord
8
cord injury
8
ankle movement
8
incomplete sci
8
activation
5
increased brain
4
brain sensorimotor
4
sensorimotor network
4
network activation
4
incomplete
4

Similar Publications

Postoperative aphasia (POA) is a common complication in patients undergoing surgery for language-eloquent lesions. This study aimed to enhance the prediction of POA by leveraging preoperative navigated transcranial magnetic stimulation (nTMS) language mapping and diffusion tensor imaging (DTI)-based tractography, incorporating deep learning (DL) algorithms. One hundred patients with left-hemispheric lesions were retrospectively enrolled (43 developed postoperative aphasia, as the POA group; 57 did not, as the non-aphasia (NA) group).

View Article and Find Full Text PDF

Background And Purpose: White matter hyperintensity (WMH) impairs cognitive function but is not evident in the early stage, raising the need to explore the underlying mechanism. We aimed to investigate the potential role of network structure-function coupling (SC-FC coupling) in cognitive performance of WMH patients.

Methods: A total of 617 participants with WMH (mean age = 61 [SD = 8]; 287 females [46.

View Article and Find Full Text PDF

Purpose: Postoperative delirium (POD) remains poorly understood in terms of predictors and underlying mechanisms. This review summarized emerging evidence on the association between brain microstructural alterations and POD.

Method: This is a narrative review, describing the microstructural changes in aging brain, microstructural MRI findings, relationship among microstructural alterations, cognitive reserve and POD, and potential interventions targeting microstructure.

View Article and Find Full Text PDF

Purpose: This study aimed to investigate the relationship between tissue bridges and bladder and bowel outcomes in chronic cervical spinal cord injury (SCI).

Methods: Between July 2020 and January 2024, 44 patients with chronic cervical SCI were retrospectively included in this cross-sectional study at a specialized SCI center. Lesion severity was assessed by tissue bridges, lesion length, lesion width, and lesion area.

View Article and Find Full Text PDF

Astrocytic monoamine oxidase B (MAOB)-gamma-aminobutyric acid (GABA) axis as a molecular brake on repair following spinal cord injury.

Signal Transduct Target Ther

September 2025

Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, Republic of Korea.

Neuroregeneration and remyelination rarely occur in the adult mammalian brain and spinal cord following central nervous system (CNS) injury. The glial scar has been proposed as a major contributor to this failure in the regenerative process. However, its underlying molecular and cellular mechanisms remain unclear.

View Article and Find Full Text PDF