Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A combination of acetate oxidation and acetoclastic methanogenesis has been previously identified to enable high-rate methanogenesis at high temperatures (55 to 65°C), but this capability had not been linked to any key organisms. This study combined RNA-stable isotope probing on 13C-labelled acetate and 16S amplicon sequencing to identify the active micro-organisms involved in high-rate methanogenesis. Active biomass was harvested from three bench-scale thermophilic bioreactors treating waste activated sludge at 55, 60 and 65°C, and fed with 13-C labelled and 12C-unlabelled acetate. Acetate uptake and cumulative methane production were determined and kinetic parameters were estimated using model-based analysis. Pyrosequencing performed on 13C- enriched samples indicated that organisms accumulating labelled carbon were Coprothermobacter (all temperatures between 55 and 65°C), acetoclastic Methanosarcina (55 to 60°C) and hydrogenotrophic Methanothermobacter (60 to 65°C). The increased relative abundance of Coprothermobacter with increased temperature corresponding with a shift to syntrophic acetate oxidation identified this as a potentially key oxidiser. Methanosarcina likely acts as both a hydrogen utilising and acetoclastic methanogen at 55°C, and is replaced by Methanothermobacter as a hydrogen utiliser at higher temperatures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4973872PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0159760PLOS

Publication Analysis

Top Keywords

acetate oxidation
8
high-rate methanogenesis
8
temperatures 65°c
8
acetate
5
high-rate high
4
high temperature
4
temperature acetotrophic
4
methanogenesis
4
acetotrophic methanogenesis
4
methanogenesis governed
4

Similar Publications

Purpose: To evaluate the impact of MRP inhibition by MK571 on prostate hypercontractility in diet-induced obesity, based on the hypothesis that this intervention enhances intracellular cAMP and cGMP signaling.

Methods: Adult C57BL/6 mice were divided into three groups: (i) lean, (ii) obese, and (iii) obese + MK571 (5 mg/kg/day, 14 days). The prostate was isolated for immunohistochemistry, biochemistry and functional assays.

View Article and Find Full Text PDF

Dichloroacetate (DCA), as a pan-inhibitor of pyruvate dehydrogenase kinase, plays a crucial role in energy metabolism and mitochondrial function. DCA decreases lactic acid synthesis, enhances mitochondrial oxidative phosphorylation, and regulates aerobic glycolysis. During the last decade, more and more studies have found that disorders of energy metabolism and mitochondrial dysfunction play a pivotal role in the development and progression of various diseases, and the role of DCA in cancer, metabolic diseases, and inflammatory diseases has been extensively explored in both basic and clinical studies.

View Article and Find Full Text PDF

Designer precursors for the synthesis of amphetamine-type stimulants pose a significant challenge to law enforcement. The precursors APAAN (α-phenylacetoacetonitrile) and MAPA (methyl α-acetylphenylacetate) became popular in the previous decade and have since been restricted. Recently, a ring-substituted analog of MAPA used for the synthesis of MDMA (3,4-methylenedioxymethamphetamine) was detected, highlighting the potential for criminal misuse of substituted analogs of these designer precursors.

View Article and Find Full Text PDF

Silicon carbide (SiC) membranes combine exceptional chemical, thermal, and mechanical stability but suffer from surface inertness that precludes functionalization. Conversely, MOFs offer unmatched molecular selectivity but are typically powders, severely limiting their practical use. To address this, we develop a generalizable route to fabricate ultrastable MOF@SiC membranes via sequential oxidation and acidification, creating abundant Si-OH sites on SiC surfaces that covalently bond with Zr-MOF crystals; the bonding mechanism between MOFs and substrates has been extensively studied.

View Article and Find Full Text PDF

Dinitrogen (N) fixation provides bioavailable nitrogen to the biosphere. However, in some habitats (e.g.

View Article and Find Full Text PDF