Transcriptome Profiling of the Green Alga Spirogyra pratensis (Charophyta) Suggests an Ancestral Role for Ethylene in Cell Wall Metabolism, Photosynthesis, and Abiotic Stress Responses.

Plant Physiol

Department of Cell Biology and Molecular Genetics, University of Maryland, Bioscience Research Building, College Park, Maryland 20742-5815 (B.V.d.P., E.D.C., C.C., C.F.D.); and Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstra

Published: September 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

It is well known that ethylene regulates a diverse set of developmental and stress-related processes in angiosperms, yet its roles in early-diverging embryophytes and algae are poorly understood. Recently, it was shown that ethylene functions as a hormone in the charophyte green alga Spirogyra pratensis Since land plants evolved from charophytes, this implies conservation of ethylene as a hormone in green plants for at least 450 million years. However, the physiological role of ethylene in charophyte algae has remained unknown. To gain insight into ethylene responses in Spirogyra, we used mRNA sequencing to measure changes in gene expression over time in Spirogyra filaments in response to an ethylene treatment. Our analyses show that at the transcriptional level, ethylene predominantly regulates three processes in Spirogyra: (1) modification of the cell wall matrix by expansins and xyloglucan endotransglucosylases/hydrolases, (2) down-regulation of chlorophyll biosynthesis and photosynthesis, and (3) activation of abiotic stress responses. We confirmed that the photosynthetic capacity and chlorophyll content were reduced by an ethylene treatment and that several abiotic stress conditions could stimulate cell elongation in an ethylene-dependent manner. We also found that the Spirogyra transcriptome harbors only 10 ethylene-responsive transcription factor (ERF) homologs, several of which are regulated by ethylene. These results provide an initial understanding of the hormonal responses induced by ethylene in Spirogyra and help to reconstruct the role of ethylene in ancestral charophytes prior to the origin of land plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5074641PMC
http://dx.doi.org/10.1104/pp.16.00299DOI Listing

Publication Analysis

Top Keywords

ethylene
12
role ethylene
12
abiotic stress
12
green alga
8
alga spirogyra
8
spirogyra pratensis
8
cell wall
8
stress responses
8
ethylene regulates
8
land plants
8

Similar Publications

Effective removal of trace heavy metal ions from aqueous bodies is a pressing problem and requires significant improvement in the area of absorbent material in terms of removal efficiency and sustainability. We propose an efficient strategy to enhance the adsorption efficiency of carbon nanotubes (CNTs) by growing dendrimers on their surface. First, CNTs were pre-functionalized with maleic acid (MA) via Diels-Alder reaction in presence of a deep eutectic solvent under ultrasonication.

View Article and Find Full Text PDF

Background And Aim: Indonesia's indigenous Kacang goat population is in decline, posing a threat to food security and genetic diversity. maturation and cryopreservation techniques are key strategies for genetic conservation. However, heat shock stress during cryopreservation can compromise oocyte viability.

View Article and Find Full Text PDF

Strong Microbasicity in PVA/ChCl Eutectogels Induced by a Large Population of Bound Water.

J Phys Chem B

September 2025

School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China.

Eutectogels have emerged as versatile materials for wearable electronics, optical sensors, and biomedical applications. This study introduced the first investigation of microenvironmental basicity in poly(vinyl alcohol)/choline chloride (PVA/ChCl) eutectogels using lumichrome as a fluorescent probe. The incorporation of ChCl was demonstrated to enhance the microbasicity of PVA films, as evidenced by the significant promotion of lumichrome deprotonation.

View Article and Find Full Text PDF

Soda biscuit-like Ag-ZnO@ZIF-8 heterostructures were successfully synthesized using a secondary hydrothermal method for the first time, demonstrating exceptional ethylene glycol sensing performance. The sample (2-Methylimidazol (MeIm) concentration of 0.04 g) exhibits a remarkable response value of 1325.

View Article and Find Full Text PDF

Ether-based electrolytes are widely acknowledged for their potential to form stable solid electrolyte interfaces (SEIs) for stable anode performance. However, conventional ether-based electrolytes have shown a tendency for cation-solvent co-intercalation phenomena on graphite electrodes, resulting in lower capacity and higher voltage platforms compared to those of neat cation insertion in ester-based electrolytes. In response, we propose the development of weakly solvating ether solvents to weaken the interaction between cations and solvents, thereby suppressing co-intercalation behavior.

View Article and Find Full Text PDF