DISMISS: detection of stranded methylation in MeDIP-Seq data.

BMC Bioinformatics

Institute of Biological, Environmental, and Rural Sciences (IBERS), Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3FG, UK.

Published: July 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: DNA methylation is an important regulator of gene expression and chromatin structure. Methylated DNA immunoprecipitation sequencing (MeDIP-Seq) is commonly used to identify regions of DNA methylation in eukaryotic genomes. Within MeDIP-Seq libraries, methylated cytosines can be found in both double-stranded (symmetric) and single-stranded (asymmetric) genomic contexts. While symmetric CG methylation has been relatively well-studied, asymmetric methylation in any dinucleotide context has received less attention. Importantly, no currently available software for processing MeDIP-Seq reads is able to resolve these strand-specific DNA methylation signals. Here we introduce DISMISS, a new software package that detects strand-associated DNA methylation from existing MeDIP-Seq analyses.

Results: Using MeDIP-Seq datasets derived from Apis mellifera (honeybee), an invertebrate species that contains more asymmetric- than symmetric- DNA methylation, we demonstrate that DISMISS can identify strand-specific DNA methylation signals with similar accuracy as bisulfite sequencing (BS-Seq; single nucleotide resolution methodology). Specifically, DISMISS is able to confidently predict where DNA methylation predominates (plus or minus DNA strands - asymmetric DNA methylation; plus and minus DNA stands - symmetric DNA methylation) in MeDIP-Seq datasets derived from A. mellifera samples. When compared to DNA methylation data derived from BS-Seq analysis of A. mellifera worker larva, DISMISS-mediated identification of strand-specific methylated cytosines is 80 % accurate. Furthermore, DISMISS can correctly (p <0.0001) detect the origin (sense vs antisense DNA strands) of DNA methylation at splice site junctions in A. mellifera MeDIP-Seq datasets with a precision close to BS-Seq analysis. Finally, DISMISS-mediated identification of DNA methylation signals associated with upstream, exonic, intronic and downstream genomic loci from A. mellifera MeDIP-Seq datasets outperforms MACS2 (Model-based Analysis of ChIP-Seq2; a commonly used MeDIP-Seq analysis software) and closely approaches the results achieved by BS-Seq.

Conclusions: While asymmetric DNA methylation is increasingly being found in growing numbers of eukaryotic species and is the predominant pattern observed in some invertebrate genomes, it has been difficult to detect in MeDIP-Seq datasets using existing software. DISMISS now enables more sensitive examinations of MeDIP-Seq datasets and will be especially useful for the study of genomes containing either low levels of DNA methylation or for genomes containing relatively high amounts of asymmetric methylation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4966778PMC
http://dx.doi.org/10.1186/s12859-016-1158-7DOI Listing

Publication Analysis

Top Keywords

dna methylation
40
methylation
13
dna
13
methylation medip-seq
8
methylated cytosines
8
strand-specific dna
8
methylation signals
8
medip-seq datasets
8
datasets derived
8
minus dna
8

Similar Publications

Background: Work-related stress is a well-established contributor to mental health decline, particularly in the context of burnout, a state of prolonged exhaustion. Epigenetic clocks, which estimate biological age based on DNA methylation (DNAm) patterns, have been proposed as potential biomarkers of chronic stress and its impact on biological aging and health. However, their role in mediating the relationship between work-related stress, physiological stress markers, and burnout remains unclear.

View Article and Find Full Text PDF

The immune system uses a variety of DNA sensors, including endo-lysosomal Toll-like receptors 9 (TLR9) and cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS). These sensors activate immune responses by inducing the production of a variety of cytokines, including type I interferons (IFN). Activation of cGAS requires DNA-cGAS interaction.

View Article and Find Full Text PDF

The malignant manifestation of breast cancer is driven by complex molecular alterations that extend beyond genetic mutations to include epigenetic dysregulation. Among these, DNA methylation is a critical and reversible epigenetic modification that significantly influences breast cancer initiation, progression, and therapeutic resistance. This process, mediated by DNA methyltransferases (DNMTs), involves the addition of methyl groups to cytosine residues within CpG dinucleotides, resulting in transcriptional repression of genes.

View Article and Find Full Text PDF

Infertility impacts up to 17.5% of reproductive-aged couples worldwide. To aid in conception, many couples turn to assisted reproductive technology, such as IVF.

View Article and Find Full Text PDF

Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder lacking objective biomarkers for early diagnosis. DNA methylation is a promising epigenetic marker, and machine learning offers a data-driven classification approach. However, few studies have examined whole-blood, genome-wide DNA methylation profiles for ASD diagnosis in school-aged children.

View Article and Find Full Text PDF