Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

There is still considerable debate about which mechanisms drive the relationship between biodiversity and ecosystem function (BEF). Although most scientists agree on the existence of two underlying mechanisms, complementarity and selection, experimental studies keep producing contrasting results on the relative contributions of the two effects. We present a spatially explicit resource competition model and investigate how the strength of these effects is influenced by trait and environmental variability, resource distribution, and species pool size. Our results demonstrate that the increase of biomass production with increasing species numbers depends on the concurrence of environmental and trait variability: BEF relationships are stronger if functionally different species coexist in a landscape with heterogeneous resource supply. These large biodiversity effects arise from complementarity effects, whereas selection effects are maximized when broad trait ranges coincide with narrow ranges of resource supply ratios. Our results will therefore help to resolve the debate on complementarity and selection mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1890/15-0730.1DOI Listing

Publication Analysis

Top Keywords

environmental trait
8
trait variability
8
complementarity selection
8
resource supply
8
effects
5
variability constrain
4
constrain community
4
community structure
4
structure biodiversity-productivity
4
biodiversity-productivity relationship
4

Similar Publications

This study investigated the impact of dietary zeolite supplementation on growth, cecal microbiota and digesta viscosity, digestive enzymes, carcass traits, blood constituents, and antioxidant parameters of broilers. A completely randomized design was used with 240 one-day-old broiler chicks randomly assigned to three dietary treatments (0%, 1.5%, and 3% zeolite as a feed additive) with four replicates of 20 chicks each.

View Article and Find Full Text PDF

Bacillus drives functional states in synthetic plant root bacterial communities.

Genome Biol

September 2025

Department of Biology, Plant-Microbe Interactions, Science for Life, Utrecht University, Utrecht, 3584CH, The Netherlands.

Background: Plant roots release root exudates to attract microbes that form root communities, which in turn promote plant health and growth. Root community assembly arises from millions of interactions between microbes and the plant, leading to robust and stable microbial networks. To manage the complexity of natural root microbiomes for research purposes, scientists have developed reductionist approaches using synthetic microbial inocula (SynComs).

View Article and Find Full Text PDF

Flexible use of multimodal communicative strategies in adult chimpanzees.

Sci Rep

September 2025

Paleoanthropology Section, Department of Geosciences, Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany.

Human communication is remarkable for its flexibility, a trait largely reflected in its multimodal nature and shared to some extent with nonhuman primates. Although individual differences in social behaviour are known to have evolutionary implications, their role in shaping primate communication remains largely unexplored. This study adopts a multimodal framework to partition variation in chimpanzees' use of multicomponent and multisensory communicative strategies into socio-environmental, between-individual, and within-individual sources.

View Article and Find Full Text PDF

The unique biodiversity and vast carbon stocks of the Amazon rainforests are essential to the Earth System but are threatened by future water balance changes. Empirical evidence suggests that species and trait diversity may mediate forest drought responses, yet little evidence exists for tropical forest responses. In this simulation study, we identify key axes of trait variation and quantify the extent to which functional trait diversity increases tropical forests' drought resistance.

View Article and Find Full Text PDF