98%
921
2 minutes
20
Y6MoO12 doped with Eu3+ was synthesized using a citrate-complexation route, and was calcined at 800 °C and 1400 °C, respectively. The structure, morphology and photoluminescence (PL) properties of the samples, and their dependence on the crystallite size were investigated. XRD patterns indicate that the Y6MoO12:Eu3+ powder was obtained at both calcination temperatures, and had a cubic structure. The results also suggest that Y6MoO12:Eu3+ calcined at 800 °C was in the nanocrystalline phase, which was confirmed by the SEM microimage. The crystalline size was about 140 nm. Both phosphors could be excited via three channels: f-f excitation of Eu3+ by blue light, MoO groups excitation by near-UV light, and charge transfer state excitation of Eu3+ by UV light. Both samples yielded red light emissions dominated by the 5D0-7F2 transition at 613 nm. The excitation efficient of the three channels depended on the calcination temperature. The energy transfer from the MoO groups to the Eu3+ ions was more effective in the nanocrystalline phase. The temporal decay feature of the phosphor was also characterized.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2016.11871 | DOI Listing |
Anal Bioanal Chem
September 2025
Hebei Key Laboratory of Public Health Safety, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
This work presents the development of a highly sensitive, selective, and efficient aptamer-based fluorescent sensor for detecting cortisol in human urine. Carbon quantum dots-nucleic acid aptamer (CQDs-Apt) synthesized with excellent photoluminescent properties and stability, were selected as the fluorescent probe. In the presence of MoS-NSs, CQDs-Apt adsorbed onto the surface of MoS-NSs via electrostatic and π-π interactions, leading to strong and rapid fluorescence quenching due to static quenching mechanism between them.
View Article and Find Full Text PDFDalton Trans
September 2025
Department of Chemistry and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea.
The nanoscale environment within the void spaces of metal-organic frameworks (MOFs) can significantly influence the photoredox catalytic activity of encapsulated visible-light photoredox catalysts (PCs). To compare two isostructural PC@In-MOF systems, three cationic Ru(II) polypyridine complexes were successfully encapsulated within the mesoscale channels of the anionic framework of InTATB (HTATB = 4,4',4''--triazine-2,4,6-triyltribenzoic acid), which features a doubly interpenetrated framework structure. This encapsulation yielded three heterogenized visible-light PCs, RuL@InTATB, where L = 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), or 2,2'-bipyrazine (bpz).
View Article and Find Full Text PDFAdv Mater
September 2025
Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland.
AlN is a core material widely used as a substrate and heat sink in various electronic and optoelectronic devices. Introducing luminescent properties into intrinsic AIN opens new opportunities for next-generation intelligent sensors, self-powered displays, and wearable electronics. In this study, the first evidence is presented of AlN crystals exhibiting satisfactory mechanoluminescence (ML), photoluminescence (PL), and afterglow performance, demonstrating their potential as novel multifunctional optical sensors.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China.
Metal halide perovskites have garnered significant attention due to their exceptional photoelectric properties. The alkali metal doping strategy has been demonstrated to effectively modulate grain size, control crystallization kinetics, and adjust band gap characteristics in perovskite. This study employs the first-principles calculations to reveal that the selection of alkali metal species and their corresponding doping methodologies exert markedly distinct influences on both the electronic properties and ion migration kinetics of CsPbBr perovskites.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2025
Department of Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä FI 40014, Finland.
-Heterocyclic carbene (NHC)-protected gold nanoclusters (AuNCs) have emerged as promising candidates for biomedical applications due to their high stability and strong photoluminescence. However, their integration into atomistic molecular dynamics (MD) simulations, which facilitates an understanding of their behavior in biological environments, has been hindered by the lack of reliable force field parameters. Here, we present a new set of parameters for classical MD simulations of NHC-protected AuNCs, fully compatible with the AMBER force field.
View Article and Find Full Text PDF