98%
921
2 minutes
20
Oil palm (Elaeis guineensis) is the most productive oil bearing crop worldwide. It has three fruit forms, namely dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), which are controlled by the SHELL gene. The fruit forms exhibit monogenic co-dominant inheritance, where tenera is a hybrid obtained by crossing maternal dura and paternal pisifera palms. Commercial palm oil production is based on planting thin-shelled tenera palms, which typically yield 30% more oil than dura palms, while pisifera palms are female-sterile and have little to no palm oil yield. It is clear that tenera hybrids produce more oil than either parent due to single gene heterosis. The unintentional planting of dura or pisifera palms reduces overall yield and impacts land utilization that would otherwise be devoted to more productive tenera palms. Here, we identify three additional novel mutant alleles of the SHELL gene, which encode a type II MADS-box transcription factor, and determine oil yield via control of shell fruit form phenotype in a manner similar to two previously identified mutant SHELL alleles. Assays encompassing all five mutations account for all dura and pisifera palms analyzed. By assaying for these variants in 10,224 mature palms or seedlings, we report the first large scale accurate genotype-based determination of the fruit forms in independent oil palm planting sites and in the nurseries that supply them throughout Malaysia. The measured non-tenera contamination rate (10.9% overall on a weighted average basis) underscores the importance of SHELL genetic testing of seedlings prior to planting in production fields. By eliminating non-tenera contamination, comprehensive SHELL genetic testing can improve sustainability by increasing yield on existing planted lands. In addition, economic modeling demonstrates that SHELL gene testing will confer substantial annual economic gains to the oil palm industry, to Malaysian gross national income and to Malaysian government tax receipts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4914825 | PMC |
http://dx.doi.org/10.3389/fpls.2016.00771 | DOI Listing |
Braz Oral Res
September 2025
Universidade de São Paulo - USP, Bauru School of Dentistry, Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru, SP, Brazil.
This in vitro study evaluated the effect of proanthocyanidin, palm oil, and vitamin E against initial erosion. Bovine enamel blocks (n = 140) were divided into 14 groups: C+_SnCl2/NaF/Am-F-containing solution (positive control); C-_deionized water (negative control); O_palm oil; P6.5_6.
View Article and Find Full Text PDFFood Chem X
August 2025
Department of Toxicology, İstanbul Aydın University, P.O. Box 65, 00014 Istanbul, Turkey.
This study investigated the effect of refining time on the physicochemical and functional properties of anhydrous cream prepared from a palm-sunflower oil blend using a stirred ball mill. Refining was performed for 0-300 min, and its impact on particle size distribution, rheology, oxidative stability, and thermal behavior was assessed. The target particle fineness (D90 ≤ 30 μm) was achieved at approximately 180 min, with negligible reduction thereafter.
View Article and Find Full Text PDFPlant Cell Environ
September 2025
State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry
CRISPR ribonucleoprotein (RNP)-mediated genome editing offers a transgene-free platform for precise genetic modification in diverse herbaceous and tree species, including rice, wheat, apple, poplar, oil palm, rubber tree and grapevine. However, its application in woody plants faces distinct challenges, notably inefficient delivery and regeneration difficulties, particularly in species such as bamboo. While some of these issues also occur in herbaceous plants, they are often significantly more complex in woody species due to factors such as intricate cell wall architecture, widespread recalcitrant genotypes and inherent limitations of current delivery platforms.
View Article and Find Full Text PDFFood Chem X
August 2025
College of Food Science and Engineering, Henan University of Technology, 100# Lianhua road, High-Tech District, Zhengzhou 450001, Henan, China.
This study developed medium-chain fatty acid (MCFA)-enriched specialty fats for hand-grasp pancakes through enzymatic interesterification (EIE) using a soybean oil/fully hydrogenated coconut oil/fully hydrogenated palm oil blend (6:1:3 w/w/w) as the substrate. Orthogonal optimization achieved 99.85 % randomization efficiency under mild conditions (70 °C, 12 % lipase load, 4 h).
View Article and Find Full Text PDFJ Texture Stud
October 2025
Faculty of Chemical-Metallurgical Engineering, Department of Food Engineering, Istanbul Technical University, Sarıyer, Istanbul, Türkiye.
In this study, potato slices were fried in four different vegetable oils (corn, olive, palm olein, and sunflower) to investigate how oil type influences the characteristics of potato chips. The diffusion coefficient of oils was attempted to be correlated with the final moisture, oil uptake, and textural parameters of potato chips. The diffusion coefficients were determined using two approaches.
View Article and Find Full Text PDF