Age-Dependent Neurogenesis and Neuron Numbers within the Olfactory Bulb and Hippocampus of Homing Pigeons.

Front Behav Neurosci

Institute of Anatomy, University of ZurichZurich, Switzerland; Department of Physiology, School of Medical Sciences, Kwazulu-Natal UniversityDurban, South Africa; Institute of Evolutionary Medicine, University of ZurichZurich, Switzerland.

Published: July 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many birds are supreme long-distance navigators that develop their navigational ability in the first months after fledgling but update the memorized environmental information needed for navigation also later in life. We studied the extent of juvenile and adult neurogenesis that could provide such age-related plasticity in brain regions known to mediate different mechanisms of pigeon homing: the olfactory bulb (OB), and the triangular area of the hippocampal formation (HP tr). Newly generated neurons (visualized by doublecortin, DCX) and mature neurons were counted stereologically in 35 pigeon brains ranging from 1 to 168 months of age. At the age of 1 month, both areas showed maximal proportions of DCX positive neurons, which rapidly declined during the first year of life. In the OB, the number of DCX-positive periglomerular neurons declined further over time, but the number of mature periglomerular cells appeared unchanged. In the hippocampus, the proportion of DCX-positive neurons showed a similar decline yet to a lesser extent. Remarkably, in the triangular area of the hippocampus, the oldest birds showed nearly twice the number of neurons as compared to young adult pigeons, suggesting that adult born neurons in these regions expanded the local circuitry even in aged birds. This increase might reflect navigational experience and, possibly, expanded spatial memory. On the other hand, the decrease of juvenile neurons in the aging OB without adding new circuitry might be related to the improved attachment to the loft characterizing adult and old pigeons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4916210PMC
http://dx.doi.org/10.3389/fnbeh.2016.00126DOI Listing

Publication Analysis

Top Keywords

olfactory bulb
8
triangular area
8
neurons
8
adult pigeons
8
age-dependent neurogenesis
4
neurogenesis neuron
4
neuron numbers
4
numbers olfactory
4
bulb hippocampus
4
hippocampus homing
4

Similar Publications

Multimode neural population coding of diverse innate fear response by mitral and tufted cells.

Cell Rep

September 2025

International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China. Electronic address:

Neurons that encode odor information are fundamental to innate fear processes, yet how mitral/tufted (M/T) cells encode innate fear remains unknown. Here, we identify three different response patterns of M/T cells in the dorsal olfactory bulb (dOB) during active avoidance elicited by non-dehydrogenated 2,4,5-trimethylthiazole (nTMT) through in vivo calcium imaging and multielectrode recordings in mice, including enhanced responses, suppressed responses, and no response. Remarkably, suppressed response M/T cells encode active avoidance, whereas suppressed and enhanced response M/T cells jointly encode passive freezing.

View Article and Find Full Text PDF

Background: Smell tests in children need to be standardized and validated, include odors familiar to children, and be defined by age-dependent standards. This study aimed to adapt the Sniffin Kids Test (SKT) for Polish children and conduct validation and evaluation of the Sniffin Kids Poland Test (SKPOL).

Methodology: The study included 382 children (4-14 years old) recruited in Poland, who were allocated into healthy (n=343) and sick (with subjective olfactory disorders, n=39), divided into 3 age subgroups, but also 13 anosmic children with Kallmann syndrome (KS) and olfactory bulb aplasia.

View Article and Find Full Text PDF

Heterozygous loss-of-function mutations are one established cause of isolated dystonia and hyposmia. Homozygous mutations have been reported in siblings with generalized dystonia and intellectual disability. encodes major [NM_001369387.

View Article and Find Full Text PDF

Grueneberg Ganglion: An Unexplored Site for Intranasal Drug Delivery in Alzheimer's Disease.

ACS Chem Neurosci

September 2025

College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21912, Republic of Korea.

Neurological disorders such as Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Multiple Sclerosis, and Amyotrophic Lateral Sclerosis pose significant challenges for treatment. Reasons for the difficulty in finding cures for these conditions include complications in early diagnosis, progressive and irreversible neuronal damage, and the presence of the blood-brain barrier (BBB), which hinders the delivery of drugs to the affected areas of the brain. Intranasal (INL) drug administration has increasingly gained popularity among researchers for targeting neurological conditions, because of its ability to bypass the BBB.

View Article and Find Full Text PDF

Mating-induced neurogenesis and cell proliferation in male rats depend on opioid signaling.

PLoS One

September 2025

Escuela Nacional de Estudios Superiores Unidad Juriquilla, Campus UNAM-Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Querétaro, Mexico.

In the adult brain, neurogenesis primarily occurs in the dentate gyrus of the hippocampus (DG) and the olfactory bulbs, with new cells migrating from the subventricular zone. Additionally, small amounts of cell proliferation have been observed in the preoptic area (POA) and the amygdala (AMG), regions involved in the control of male sexual behavior. Sexual activity induces a reward state mediated by opioids, and our group previously demonstrated that neurogenesis induced by paced mating is opioid dependent in female rats.

View Article and Find Full Text PDF