Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

AKI leads to tubular injury and interstitial inflammation that must be controlled to avoid the development of fibrosis. We hypothesized that microRNAs are involved in the regulation of the balance between lesion formation and adaptive repair. We found that, under proinflammatory conditions, microRNA-146a (miR-146a) is transcriptionally upregulated by ligands of IL-1 receptor/Toll-like receptor family members via the activation of NF-κB in cultured renal proximal tubular cells. In vivo, more severe renal ischemia-reperfusion injury (IRI) associated with increased expression of miR-146a in both allografts and urine of human kidney transplant recipients, and unilateral IRI in mice induced miR-146a expression in injured kidneys. After unilateral IRI, miR-146a mice exhibited more extensive tubular injury, inflammatory infiltrates, and fibrosis than wild-type mice. In vitro, overexpression or downregulation of miR-146a diminished or enhanced, respectively, IL-1 receptor-associated kinase 1 expression and induced similar effects on C-X-C motif ligand 8 (CXCL8)/CXCL1 expression by injured tubular cells. Moreover, inhibition of CXCL8/CXCL1 signaling prevented the development of inflammation and fibrosis after IRI in miR-146a mice. In conclusion, these results indicate that miR-146a is a key mediator of the renal tubular response to IRI that limits the consequences of inflammation, a key process in the development of AKI and CKD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5280013PMC
http://dx.doi.org/10.1681/ASN.2016010045DOI Listing

Publication Analysis

Top Keywords

tubular injury
8
tubular cells
8
unilateral iri
8
expression injured
8
iri mir-146a
8
mir-146a mice
8
mir-146a
7
tubular
5
iri
5
microrna-146a human
4

Similar Publications

Bibliometric analysis of immune-related acute kidney injury induced by cancer immunotherapy (2000-2025).

Naunyn Schmiedebergs Arch Pharmacol

September 2025

Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.

Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy but are increasingly linked to immune-related kidney injury (irKI). This study presents the first bibliometric analysis of irKI research (2000-2025), aiming to identify key trends, mechanistic insights, and pharmacological risk factors. We analyzed 2,179 publications to understand the evolution of irKI research, focusing on areas like T cell-mediated tubular injury, immune system-driven inflammation, and changes in metabolism.

View Article and Find Full Text PDF

Circular RNA (circRNA) has been confirmed to be a regulator for septic acute kidney injury (AKI). It is reported that circ_0049271 has abnormal expression in AKI patients, but its role and mechanism in septic AKI remain unclear. Lipopolysaccharide (LPS)-stimulated HK-2 cells were served as the cellular model of sepsis-associated AKI (SAKI).

View Article and Find Full Text PDF

Acyclovir-Induced Nephrotoxicity: A Case Report.

Cureus

August 2025

Anesthesia and Critical Care, Hôpital Universitaire International Cheikh Khalifa Ibn Zaid/Faculty of Medicine, Mohammed VI University of Health Sciences, Casablanca, MAR.

Acyclovir is a widely used antiviral medication known for its potential nephrotoxic effects. These adverse effects may include acute kidney injury (AKI), acute tubulointerstitial nephritis, crystal-induced nephropathy, and, in rare cases, tubular dysfunction. While acyclovir is generally considered safe, nephrotoxicity can occur, particularly when administered at high doses or in dehydrated patients.

View Article and Find Full Text PDF

Brazilin, a natural homoisoflavonoid, is the primary bioactive ingredient derived from the bark and heartwood of L. It has been proven to exhibit multiple biological activities and therapeutic potential in chronic degenerative diseases, fibrotic disorders, inflammatory diseases, and cancers. However, whether it is involved in regulating the pathological process of acute kidney injury (AKI) is not fully understood.

View Article and Find Full Text PDF

Diabetic kidney disease (DKD) involves oxidative stress-driven damage to glomeruli (Gloms) and proximal convoluted tubules (PCT). NAD(P)H: quinone oxidoreductase 1 (NQO1) regulates redox balance, but its compartment-specific role remains unclear. Streptozotocin (STZ)-induced hyperglycemia increased albuminuria and foot process effacement, with NQO1 KO (NKO) mice exhibiting greater podocyte injury than WT, indicating exacerbated glomerular damage.

View Article and Find Full Text PDF