Publications by authors named "Clement Nguyen"

Crescentic glomerulonephritis (cGN) is a severe kidney pathology characterized by the aberrant proliferation of epithelial cells, leading to crescent formation within the Bowman's space. The molecular pathways involved in crescent formation remain poorly understood despite its clinical relevance. Given the mechanical stress experienced by podocytes, likely exacerbated in cGN, we hypothesized that activation of the mechanosensor yes-associated protein 1 (YAP), an effector of the Hippo pathway, may contribute to the development of cGN.

View Article and Find Full Text PDF
Article Synopsis
  • GSDIa leads to metabolic changes in kidney cells, resembling Warburg-like metabolism, which promotes cell growth and the development of kidney cysts.
  • The loss of glucose-6 phosphatase (G6PC1) causes harmful accumulation of glycogen and lipids, leading to kidney inflammation, fibrosis, and dysfunction.
  • Treatment with rapamycin showed potential in reducing kidney damage, and lipocalin 2 was identified as an important factor in kidney inflammation and early CKD progression.
View Article and Find Full Text PDF

Mitochondrial dysfunction is a critical process in renal epithelial cells upon kidney injury. While its implication in kidney disease progression is established, the mechanisms modulating it remain unclear. Here, we describe the role of Lipocalin-2 (LCN2), a protein expressed in injured tubular cells, in mitochondrial dysfunction.

View Article and Find Full Text PDF

Kidney mass and function are sexually determined, but the cellular events and the molecular mechanisms involved in this dimorphism are poorly characterized. By combining female and male mice with castration/replacement experiments, we showed that male mice exhibited kidney overgrowth from five weeks of age. This effect was organ specific, since liver and heart weight were comparable between males and females, regardless of age.

View Article and Find Full Text PDF

The mechanisms underlying the development of glomerular lesions during aging are largely unknown. It has been suggested that senescence might play a role, but the pathophysiological link between senescence and lesion development remains unexplained. Here, we uncovered an unexpected role for glomerular endothelial cells during aging.

View Article and Find Full Text PDF
Article Synopsis
  • The shape of nephrons, which are tiny units in the kidneys, is really important for how well the kidneys work.
  • Scientists used a special method that combines different techniques to better see and understand these nephrons in 3D.
  • They found that in a kidney disease model, cysts formed in specific areas of the nephrons, and their shapes varied depending on where they were located.
View Article and Find Full Text PDF

The loss of functional nephrons after kidney injury triggers the compensatory growth of the remaining ones to allow functional adaptation. However, in some cases, these compensatory events activate signaling pathways that lead to pathological alterations and chronic kidney disease. Little is known about the identity of these pathways and how they lead to the development of renal lesions.

View Article and Find Full Text PDF

Background: The inactivation of the ciliary proteins polycystin 1 or polycystin 2 leads to autosomal dominant polycystic kidney disease (ADPKD). Although signaling by primary cilia and interstitial inflammation both play a critical role in the disease, the reciprocal interactions between immune and tubular cells are not well characterized. The transcription factor STAT3, a component of the cilia proteome that is involved in crosstalk between immune and nonimmune cells in various tissues, has been suggested as a factor fueling ADPKD progression.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) play an important role in the kidneys under physiological and pathological conditions, but their role in immune glomerulonephritis is unclear. miR-146a has been identified as a key player in innate immunity and inflammatory responses, and in the kidney, this miRNA is involved in the response of injured tubular cells. We studied the renal and immune phenotypes of miR-146a and miR-146a mice at 12 months of age, and the results showed that miR-146a mice developed autoimmunity during aging, as demonstrated by circulating antibodies targeting double-stranded DNA and an immune complex-mediated glomerulonephritis associated with a mild renal immune infiltrate.

View Article and Find Full Text PDF

Congenital nephron number varies widely in the human population and individuals with low nephron number are at risk of developing hypertension and chronic kidney disease. The development of the kidney occurs via an orchestrated morphogenetic process where metanephric mesenchyme and ureteric bud reciprocally interact to induce nephron formation. The genetic networks that modulate the extent of this process and set the final nephron number are mostly unknown.

View Article and Find Full Text PDF

AKI leads to tubular injury and interstitial inflammation that must be controlled to avoid the development of fibrosis. We hypothesized that microRNAs are involved in the regulation of the balance between lesion formation and adaptive repair. We found that, under proinflammatory conditions, microRNA-146a (miR-146a) is transcriptionally upregulated by ligands of IL-1 receptor/Toll-like receptor family members via the activation of NF-κB in cultured renal proximal tubular cells.

View Article and Find Full Text PDF

In CKD, tubular cells may be involved in the induction of interstitial fibrosis, which in turn, leads to loss of renal function. However, the molecular mechanisms that link tubular cells to the interstitial compartment are not clear. Activation of the Stat3 transcription factor has been reported in tubular cells after renal damage, and Stat3 has been implicated in CKD progression.

View Article and Find Full Text PDF

In chronic kidney disease (CKD), proteinuria results in severe tubulointerstitial lesions, which ultimately lead to end-stage renal disease. Here we identify 4-phenylbutyric acid (PBA), a chemical chaperone already used in humans, as a novel therapeutic strategy capable to counteract the toxic effect of proteinuria. Mechanistically, we show that albumin induces tubular unfolded protein response via cytosolic calcium rise, which leads to tubular apoptosis by Lipocalin 2 (LCN2) modulation through ATF4.

View Article and Find Full Text PDF

FSGS is a common glomerular disorder that has a high propensity for recurrence after kidney transplant. The pathophysiology of FSGS is unknown, but podocytes seem to be the target of one or several circulating factors that lead to cytoskeleton reorganization and proteinuria. Research on podocytes has identified B7-1 as an important factor in podocyte biology and a new therapeutic target in renal disease.

View Article and Find Full Text PDF

In chronic kidney disease (CKD), loss of functional nephrons results in metabolic and mechanical stress in the remaining ones, resulting in further nephron loss. Here we show that Akt2 activation has an essential role in podocyte protection after nephron reduction. Glomerulosclerosis and albuminuria were substantially worsened in Akt2(-/-) but not in Akt1(-/-) mice as compared to wild-type mice.

View Article and Find Full Text PDF

Mechanisms of progression of chronic kidney disease (CKD), a major health care burden, are poorly understood. EGFR stimulates CKD progression, but the molecular networks that mediate its biological effects remain unknown. We recently showed that the severity of renal lesions after nephron reduction varied substantially among mouse strains and required activation of EGFR.

View Article and Find Full Text PDF

Endothelial dysfunction and arterial stiffness are major determinants of cardiovascular risk in patients with end-stage renal failure (ESRF). Microparticles are membrane fragments shed from damaged or activated cells. Because microparticles can affect endothelial cells, this study investigated the relationship between circulating microparticles and arterial dysfunction in patients with ESRF and identified the cellular origin of microparticles associated with these alterations.

View Article and Find Full Text PDF