98%
921
2 minutes
20
CD95 ligand (CD95L) is expressed by immune cells and triggers apoptotic death. Metalloprotease-cleaved CD95L (cl-CD95L) is released into the bloodstream but does not trigger apoptotic signaling. Hence, the pathophysiological role of cl-CD95L remains unclear. We observed that skin-derived endothelial cells from systemic lupus erythematosus (SLE) patients expressed CD95L and that after cleavage, cl-CD95L promoted T helper 17 (Th17) lymphocyte transmigration across the endothelial barrier at the expense of T regulatory cells. T cell migration relied on a direct interaction between the CD95 domain called calcium-inducing domain (CID) and the Src homology 3 domain of phospholipase Cγ1. Th17 cells stimulated with cl-CD95L produced sphingosine-1-phosphate (S1P), which promoted endothelial transmigration by activating the S1P receptor 3. We generated a cell-penetrating CID peptide that prevented Th17 cell transmigration and alleviated clinical symptoms in lupus mice. Therefore, neutralizing the CD95 non-apoptotic signaling pathway could be an attractive therapeutic approach for SLE treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4961226 | PMC |
http://dx.doi.org/10.1016/j.immuni.2016.06.028 | DOI Listing |
Eur J Immunol
January 2024
UMR CNRS 7276, INSERM U1262, CRIBL, Université Limoges, Limoges, France.
To better understand the stoichiometry of CD95L required to trigger apoptotic and nonapoptotic signals, we generated several CD95L concatemers from dimer to hexamer conjugated via a flexible link (GGGGS) . These ligands reveal that although the hexameric structure is the best stoichiometry to trigger cell death, a dimer is sufficient to induce the apoptotic response in CD95-sensitive Jurkat cells. Interestingly, only trimeric and hexameric forms can implement a potent Ca response, suggesting that while CD95 aggregation controls the implementation of the apoptotic signal, both aggregation and conformation are required to implement the Ca pathway.
View Article and Find Full Text PDFMethods Mol Biol
February 2018
INSERM U1218, 229 COURS DE L'ARGONNE, CS 61283, 33076, Bordeaux Cedex, France.
Intracellular calcium signals regulate cell function and cell survival by controlling many processes. CD95 engagement results in distinct intracellular calcium signals that control the cell fate, apoptosis, or survival, depending on the ligand (membrane or soluble). Intracellular calcium determination is an exquisite readout to explore the molecular mechanisms elicited by CD95 engagement.
View Article and Find Full Text PDFImmunity
July 2016
Centre Eugène Marquis, Rue Bataille Flandres Dunkerque, 35042 Rennes, France; INSERM ERL440-OSS, Equipe Labellisée, Ligue Contre Le Cancer, 35042 Rennes, France; Université de Rennes 1, 2 Ave. du Prof. Léon Bernard, 35043 Rennes, France; Biosit, Plateforme H2P2, Biogenouest, 2 Ave. du Prof. Léo
CD95 ligand (CD95L) is expressed by immune cells and triggers apoptotic death. Metalloprotease-cleaved CD95L (cl-CD95L) is released into the bloodstream but does not trigger apoptotic signaling. Hence, the pathophysiological role of cl-CD95L remains unclear.
View Article and Find Full Text PDFCell Death Differ
October 2016
Inserm ER440-Oncogenesis, Stress and Signaling, Equipe Labellisée Ligue Contre Le Cancer, Rue Bataille Flandres Dunkerque, Rennes 35042, France.
Metalloprotease-processed CD95L (cl-CD95L) is a soluble cytokine that implements a PI3K/Ca(2+) signaling pathway in triple-negative breast cancer (TNBC) cells. Accordingly, high levels of cl-CD95L in TNBC women correlate with poor prognosis, and administration of this ligand in an orthotopic xenograft mouse model accelerates the metastatic dissemination of TNBC cells. The molecular mechanism underlying CD95-mediated cell migration remains unknown.
View Article and Find Full Text PDFOur recent findings indicate that cells exposed to transmembrane (m-CD95L) or metalloprotease-cleaved CD95L (cl-CD95L) undergo a localized Ca(2+)entry that not only inhibits the initial steps of the CD95-mediated apoptotic signal but also promotes cell motility. Based on recent findings published on the non-apoptotic signals induced by CD95, we discuss how m-CD95L and cl-CD95L diverging by their stoichiometry could both contribute to the immune response by first recruiting activated T lymphocytes in the inflamed area and later by eliminating infected and transformed cells.
View Article and Find Full Text PDF