Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The structure of a novel compound from Adansonia digitata has been elucidated, and its H and C NMR spectra have been assigned employing a variety of one-dimensional and two-dimensional NMR techniques without degradative chemistry. The Advanced Chemistry Development ACD/Structure Elucidator software was important for determining part of this structure that contained a fused bicyclic system with very few hydrogen atoms, which in turn, exhibited essentially no discriminating HMBC connectivities throughout that portion of the molecule. Copyright © 2016 John Wiley & Sons, Ltd.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5319920PMC
http://dx.doi.org/10.1002/mrc.4466DOI Listing

Publication Analysis

Top Keywords

application computer-assisted
4
computer-assisted structure
4
structure elucidation
4
elucidation program
4
program structural
4
structural determination
4
determination terpenoid
4
terpenoid aldehyde
4
aldehyde unusual
4
unusual skeleton
4

Similar Publications

Antioxidants: The Chemical Complexity Behind a Simple Word.

Acc Chem Res

September 2025

Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Ave. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A sección, Alcaldía Iztapalapa, 09310 Mexico City, Mexico.

ConspectusWhat does the word antioxidant mean? Antioxidants are supposed to be nontoxic, versatile molecules capable of counteracting the damaging effects of oxidative stress (OS). Thus, when evaluating a candidate molecule as an antioxidant, several aspects should be considered. Antioxidants are more than free radical scavengers.

View Article and Find Full Text PDF

The identification of deceased individuals is essential in forensic investigations, particularly when primary identification methods such as odontology, fingerprint, or DNA analysis are unavailable. In such cases, implanted medical devices may serve as supplementary identifiers for positive identification. This study proposes deep learning-based methods for the automatic detection of metallic implants in scout images acquired from computed tomography (CT).

View Article and Find Full Text PDF

YOLOv11-WBD: A wavelet-bidirectional network with dilated perception for robust metal surface defect detection.

PLoS One

September 2025

Department of Smart Manufacturing, Industrial Perception and Intelligent Manufacturing Equipment Engineering Research Center of Jiangsu Province, Nanjing Vocational University of Industry Technology, Nanjing, Jiangsu, China.

In the field of quality control, metal surface defect detection is an important yet challenging task. Although YOLO models perform well in most object detection scenarios, metal surface images under operational conditions often exhibit coexisting high-frequency noise components and spectral aliasing background textures, and defect targets typically exhibit characteristics such as small scale, weak contrast, and multi-class coexistence, posing challenges for automatic defect detection systems. To address this, we introduce concepts including wavelet decomposition, cross-attention, and U-shaped dilated convolution into the YOLO framework, proposing the YOLOv11-WBD model to enhance feature representation capability and semantic mining effectiveness.

View Article and Find Full Text PDF

Significance: The spatial and temporal distribution of fluorophore fractions in biological and environmental systems contains valuable information about the interactions and dynamics of these systems. To access this information, fluorophore fractions are commonly determined by means of their fluorescence emission spectrum (ES) or lifetime (LT). Combining both dimensions in temporal-spectral multiplexed data enables more accurate fraction determination while requiring advanced and fast analysis methods to handle the increased data complexity and size.

View Article and Find Full Text PDF

Background: Four-dimensional magnetic resonance imaging (4D-MRI) holds great promise for precise abdominal radiotherapy guidance. However, current 4D-MRI methods are limited by an inherent trade-off between spatial and temporal resolutions, resulting in compromised image quality characterized by low spatial resolution and significant motion artifacts, hindering clinical implementation. Despite recent advancements, existing methods inadequately exploit redundant frame information and struggle to restore structural details from highly undersampled acquisitions.

View Article and Find Full Text PDF