Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polyamines are small basic compounds present in all living organisms and act in a variety of biological processes. However, the mechanism of polyamine sensing, signaling and response in relation to other metabolic pathways remains to be fully addressed in plant cells. As one approach, we isolated Arabidopsis mutants that show increased resistance to spermine in terms of chlorosis. We show here that two of the mutants have a point mutation in a nitrate transporter gene of the NRT1/PTR family (NPF), NRT1.3 (AtNPF6.4). These mutants also exhibit increased resistance to putrescine and spermidine while loss-of-function mutants of the two closest homologs of NRT1.3, root-specific NRT1.1 (AtNPF6.3) and petiole-specific NRT1.4 (AtNPF6.2), were shown to have a normal sensitivity to polyamines. When the GUS reporter gene was expressed under the control of the NRT1.3 promoter, GUS staining was observed in leaf mesophyll cells and stem cortex cells but not in the epidermis, suggesting that NRT1.3 specifically functions in parenchymal tissues. We further found that the aerial part of the mutant seedling has normal levels of polyamines but shows reduced uptake of norspermidine compared with the wild type. These results suggest that polyamine transport or metabolism is associated with nitrate transport in the parenchymal tissue of the shoot.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4904021PMC
http://dx.doi.org/10.3389/fpls.2016.00834DOI Listing

Publication Analysis

Top Keywords

nitrate transporter
8
transporter gene
8
nrt13 atnpf64
8
increased resistance
8
nrt13
5
polyamine resistance
4
resistance increased
4
increased mutations
4
mutations nitrate
4
gene nrt13
4

Similar Publications

Genome-Wide Identification, Characterization, and Expression Analysis of Gene Family in .

Biology (Basel)

August 2025

Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, College of Plant Protection, School of Future Technology, Haixai Institute of Science and Technology, Fujian Agriculture an

Nitrogen (N) is crucial for plant growth and stress resistance and is primarily absorbed and transported by nitrate transporters (NRT). , known for its strong salt-alkali stress resistance, and genes have rarely been reported. This study aims to identify and analyze the gene family to understand its composition, evolutionary patterns, and roles in salt stress responses.

View Article and Find Full Text PDF

Nitrogen-Driven Orchestration of Lateral Root Development: Molecular Mechanisms and Systemic Integration.

Biology (Basel)

August 2025

Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.

N, as plants' most essential nutrient, profoundly shapes root system architecture (RSA), with LRs being preferentially regulated. This review synthesizes the intricate molecular mechanisms underpinning N sensing, signaling, and its integration into developmental pathways governing LR initiation, primordium formation, emergence, and elongation. We delve deeply into the roles of specific transporters (NRT1.

View Article and Find Full Text PDF

The ILR3-NRTs/NIA1/SWEET12 module regulates nitrogen uptake and utilization in apple.

Mol Hortic

September 2025

State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China. 100251084

Nitrogen (N) is essential for the physiological metabolism, growth, and development of plants. Plants have evolved a complex regulatory network for the efficient regulation of N uptake and utilization to adapt to fluctuations in environmental N levels. However, the mechanisms underlying the regulation of N absorption and utilization in apple remain unclear.

View Article and Find Full Text PDF

Rising atmospheric CO2 and intensified drought are reshaping nutrient dynamics in C3 plants, with implications for ecosystem function and food security. To investigate how these stressors jointly affect nutrient homeostasis, we examined Brachypodium distachyon, a model for C3 cereal grasses, grown under ambient (400 ppm) or elevated (800 ppm) CO2, factorially combined with well-watered or drought treatments. Integrative analyses of physiology, ionomics, transcriptomics, and non-targeted metabolomics revealed that plant elemental composition and metabolomic responses to elevated CO2 strongly depend on water availability.

View Article and Find Full Text PDF

Wild soybean (Glycine soja) is a leguminous species known for its ability to thrive in challenging and barren environments. It has been reported that the nitrate transporters (NRTs) play critical roles for plants to survive in the nutrient-poor soils. However, the molecular mechanisms of GsNRTs in governing nitrogen (N) uptake remain largely elusive.

View Article and Find Full Text PDF