98%
921
2 minutes
20
Background: The introduction of the inactivated poliovirus vaccine (IPV) represents a crucial step in the polio eradication endgame. This trial examined the safety and immunogenicity of IPV given alongside the measles-rubella and yellow fever vaccines at 9 months and when given as a full or fractional dose using needle and syringe or disposable-syringe jet injector.
Methods: We did a phase 4, randomised, non-inferiority trial at three periurban government clinics in west Gambia. Infants aged 9-10 months who had already received oral poliovirus vaccine were randomly assigned to receive the IPV, measles-rubella, and yellow fever vaccines, singularly or in combination. Separately, IPV was given as a full intramuscular or fractional intradermal dose by needle and syringe or disposable-syringe jet injector at a second visit. The primary outcomes were seroprevalence rates for poliovirus 4-6 weeks post-vaccination and the rate of seroconversion between baseline and post-vaccination serum samples for measles, rubella, and yellow fever; and the post-vaccination antibody titres generated against each component of the vaccines. We did a per-protocol analysis with a non-inferiority margin of 10% for poliovirus seroprevalence and measles, rubella, and yellow fever seroconversion, and (1/3) log2 for log2-transformed antibody titres. This trial is registered with ClinicalTrials.gov, number NCT01847872.
Findings: Between July 10, 2013, and May 8, 2014, we assessed 1662 infants for eligibility, of whom 1504 were enrolled into one of seven groups for vaccine interference and one of four groups for fractional dosing and alternative route of administration. The rubella and yellow fever antibody titres were reduced by co-administration but the seroconversion rates achieved non-inferiority in both cases (rubella, -4·5% [95% CI -9·5 to -0·1]; yellow fever, 1·2% [-2·9 to 5·5]). Measles and poliovirus responses were unaffected (measles, 6·8% [95% CI -1·4 to 14·9]; poliovirus serotype 1, 1·6% [-6·7 to 4·7]; serotype 2, 0·0% [-2·1 to 2·1]; serotype 3, 0·0% [-3·8 to 3·9]). Poliovirus seroprevalence was universally high (>97%) after vaccination, but the antibody titres generated by fractional intradermal doses of IPV did not achieve non-inferiority compared with full dose. The number of infants who seroconverted or had a four-fold rise in titres was also lower by the intradermal route. There were no safety concerns.
Interpretation: The data support the future co-administration of IPV, measles-rubella, and yellow fever vaccines within the Expanded Programme on Immunization schedule at 9 months. The administration of single fractional intradermal doses of IPV by needle and syringe or disposable-syringe jet injector compromises the immunity generated, although it results in a high post-vaccination poliovirus seroprevalence.
Funding: Bill & Melinda Gates Foundation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S2214-109X(16)30075-4 | DOI Listing |
Front Vet Sci
August 2025
Faculty of Health Sciences, Universidad Científica del Sur, Lima, Peru.
Background: Yellow fever virus (YFV) remains a re-emerging zoonotic threat in South America. While epizootics in free-ranging spp. are well-documented, little is known about YFV infection in other Neotropical non-human primates (NHPs), particularly in captive settings.
View Article and Find Full Text PDFExp Parasitol
September 2025
Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia.
Excessive use of agrochemicals results in contamination of water due to runoff or leaching. Insecticide induced-hormesis, a phenomenon characterized by low dose stimulation following exposure to insecticide, is crucial to insect pest resurgence. In this study, the effects of low or sublethal concentrations of emamectin benzoate and thiamethoxam on biological traits and genes expression were investigated for yellow fever mosquito, Aedes aegypti following 48 h exposures.
View Article and Find Full Text PDFRev Peru Med Exp Salud Publica
August 2025
Instituto Nacional de Salud. Lima, Perú.
Commun Biol
September 2025
Rutgers Global Health Institute, Rutgers University, New Brunswick, NJ, USA.
Widespread yellow fever virus (YFV) immunity in Sub-Saharan Africa may mitigate orthoflavivirus outbreaks. Here, we investigate whether pre-existing YFV-17D immunity confers cross-protection against dengue virus serotype 2 (DENV-2) infection in a murine model. IFNAR1 mice immunized with YFV-17D exhibited significantly reduced DENV-2 viremia, weight loss, and disease severity, with improved survival compared to naïve controls.
View Article and Find Full Text PDFPeerJ
September 2025
Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University, Salaya, Nakhon Pathom, Thailand.
Background: The genus primarily consists of arthropod-borne viruses capable of infecting vertebrate hosts and causing serious human diseases such as dengue fever, Zika fever, Japanese encephalitis, West Nile fever, and yellow fever. This study describes the development of a simple and field-deployable detection system for multiple pathogenic orthoflavivirus species using the recombinase polymerase amplification (RPA) technique.
Methods: Several previously published broad-specific primers targeting the genus were evaluated.