Endocrine radionuclide scintigraphy with fusion single photon emission computed tomography/computed tomography.

World J Radiol

Ka-Kit Wong, Arpit Gandhi, Milton D Gross, Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, MI 48109-5028, United States.

Published: June 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aim: To review the benefits of single photon emission computed tomography (SPECT)/computed tomography (CT) hybrid imaging for diagnosis of various endocrine disorders.

Methods: We performed MEDLINE and PubMed searches using the terms: "SPECT/CT"; "functional anatomic mapping"; "transmission emission tomography"; "parathyroid adenoma"; "thyroid cancer"; "neuroendocrine tumor"; "adrenal"; "pheochromocytoma"; "paraganglioma"; in order to identify relevant articles published in English during the years 2003 to 2015. Reference lists from the articles were reviewed to identify additional pertinent articles. Retrieved manuscripts (case reports, reviews, meta-analyses and abstracts) concerning the application of SPECT/CT to endocrine imaging were analyzed to provide a descriptive synthesis of the utility of this technology.

Results: The emergence of hybrid SPECT/CT camera technology now allows simultaneous acquisition of combined multi-modality imaging, with seamless fusion of three-dimensional volume datasets. The usefulness of combining functional information to depict the bio-distribution of radiotracers that map cellular processes of the endocrine system and tumors of endocrine origin, with anatomy derived from CT, has improved the diagnostic capability of scintigraphy for a range of disorders of endocrine gland function. The literature describes benefits of SPECT/CT for (99m)Tc-sestamibi parathyroid scintigraphy and (99m)Tc-pertechnetate thyroid scintigraphy, (123)I- or (131)I-radioiodine for staging of differentiated thyroid carcinoma, (111)In- and (99m)Tc- labeled somatostatin receptor analogues for detection of neuroendocrine tumors, (131)I-norcholesterol (NP-59) scans for assessment of adrenal cortical hyperfunction, and (123)I- or (131)I-metaiodobenzylguanidine imaging for evaluation of pheochromocytoma and paraganglioma.

Conclusion: SPECT/CT exploits the synergism between the functional information from radiopharmaceutical imaging and anatomy from CT, translating to improved diagnostic accuracy and meaningful impact on patient care.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4919764PMC
http://dx.doi.org/10.4329/wjr.v8.i6.635DOI Listing

Publication Analysis

Top Keywords

single photon
8
photon emission
8
emission computed
8
improved diagnostic
8
endocrine
6
imaging
5
endocrine radionuclide
4
scintigraphy
4
radionuclide scintigraphy
4
scintigraphy fusion
4

Similar Publications

Giant two-photon upconversion from 2D exciton in doubly-resonant plasmonic nanocavity.

Light Sci Appl

September 2025

Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, China.

Photon upconversion through high harmonic generation, multiphoton absorption, Auger recombination and phonon scattering performs a vital role in energy conversion and renormalization. Considering the reduced dielectric screening and enhanced Coulomb interactions, semiconductor monolayers provide a promising platform to explore photon upconversion at room temperature. Additionally, two-photon upconversion was recently demonstrated as an emerging technique to probe the excitonic dark states due to the extraordinary selection rule compared with conventional excitation.

View Article and Find Full Text PDF

Developmental Neuroplasticity Enables Recovery from Anesthetic-Induced Synaptic Perturbations in the Immature Brain.

Neurochem Int

September 2025

Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Advanced Medical Technology Center, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Key La

General anesthetics are essential in pediatric medicine, yet concerns persist regarding their potential neurotoxic effects on the developing brain. Whether transient synaptic disruptions caused by anesthesia lead to long-term deficits or are mitigated by endogenous plasticity remains unresolved. Here, we use longitudinal in vivo two-photon imaging in awake mice to investigate the structural and functional consequences of a single, clinically relevant exposure to sevoflurane at postnatal day 20.

View Article and Find Full Text PDF

Photon-Interfaced Ten-Qubit Register of Trapped Ions.

Phys Rev Lett

August 2025

Universität Innsbruck, Institut für Experimentalphysik, Technikerstrasse 25, 6020 Innsbruck, Austria.

Establishing networks of quantum processors offers a path to scalable quantum computing and applications in communication and sensing. This requires first developing efficient interfaces between photons and multiqubit registers. In this Letter, we show how to entangle each individual matter qubit in a register of ten to a separate traveling photon.

View Article and Find Full Text PDF

We present the first results from the Quantum Resolution-Optimized Cryogenic Observatory for Dark matter Incident at Low Energy (QROCODILE). The QROCODILE experiment uses a microwire-based superconducting nanowire single-photon detector (SNSPD) as a target and sensor for dark matter scattering and absorption, and is sensitive to energy deposits as low as 0.11 eV.

View Article and Find Full Text PDF

On-Chip Emitter-Coupled Meta-Optics for Versatile Photon Sources.

Phys Rev Lett

August 2025

University of Southern Denmark, Centre for Nano Optics, Campusvej 55, Odense M DK-5230, Denmark.

Controlling the spontaneous emission of nanoscale quantum emitters (QEs) is crucial for developing advanced photon sources required in many areas of modern nanophotonics, including quantum information technologies. Conventional approaches to shaping photon emission are based on using bulky configurations, while approaches recently developed in quantum metaphotonics suffer from limited capabilities in achieving desired polarization states and directionality, failing to provide on-demand photon sources tailored precisely to technological needs. Here, we propose a universal approach to designing versatile photon sources using on-chip QE-coupled meta-optics that enable direct transformations of QE-excited surface plasmon polaritons into spatially propagating photon streams with arbitrary polarization states, directionality, and amplitudes via both resonance and geometric phases supplied by scattering meta-atoms.

View Article and Find Full Text PDF