98%
921
2 minutes
20
Unlabelled: The tumor suppressor p53 plays a critical part in determining cell fate both as a regulator of the transcription of several proapoptotic genes and through its binding interactions with Bcl-2 family proteins at mitochondria. We now demonstrate that p53 protein levels are increased in infected brains during reovirus encephalitis. This increase occurs in the cytoplasm of reovirus-infected neurons and is associated with the activation of caspase 3. Increased levels of p53 in reovirus-infected brains are not associated with increased expression levels of p53 mRNA, suggesting that p53 regulation occurs at the protein level. Increased levels of p53 are also not associated with the increased expression levels of p53-regulated, proapoptotic genes. In contrast, upregulated p53 accumulates in mitochondria. Previous reports demonstrated that the binding of p53 to Bak at mitochondria causes Bak activation and results in apoptosis. We now show that Bak is activated and that activated Bak is bound to p53 during reovirus encephalitis. In addition, survival is enhanced in reovirus-infected Bak(-/-) mice compared to controls, demonstrating a role for Bak in reovirus pathogenesis. Inhibition of the mitochondrial translocation of p53 with pifithrin μ prevents the formation of p53/Bak complexes following reovirus infection of ex vivo brain slice cultures and results in decreased apoptosis and tissue injury. These results suggest that the mitochondrial localization of p53 regulates reovirus-induced pathogenesis in the central nervous system (CNS) through its interactions with Bak.
Importance: There are virtually no specific treatments of proven efficacy for virus-induced neuroinvasive diseases. A better understanding of the pathogenesis of virus-induced CNS injury is crucial for the rational development of novel therapies. Our studies demonstrate that p53 is activated in the brain following reovirus infection and may provide a therapeutic target for virus-induced CNS disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4988164 | PMC |
http://dx.doi.org/10.1128/JVI.00583-16 | DOI Listing |
Curr Cancer Drug Targets
September 2025
Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Menoufia, Egypt.
Introduction: Breast cancer is the most common malignancy among women and the second leading cause of cancer-related deaths worldwide. Resveratrol, a polyphenolic stilbene derivative found in grapes, red wine, and other plants, possesses anti-cancer properties. Various studies have reported the potential of different nanomaterials to act as radiosensitizers against tumor cells.
View Article and Find Full Text PDFBiomaterials
August 2025
Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laborator
Bone healing requires Schwann cells (SCs) paracrine factors for mesenchymal stem cell function. Diabetes mellitus (DM) patients are susceptible to developing SCs dysfunction and impairing bone healing. Rare research considered reconstructing mesenchymal stem cell-schwann cell circuitry in diabetic bone regeneration.
View Article and Find Full Text PDFJ Cell Mol Med
September 2025
Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, Bangladesh.
Ferroptosis, a controlled cell death influenced by iron-dependent lipid peroxidation, presents potential therapeutic targets for cancer treatment due to its unique molecular pathways and potential drug resistance. Natural compounds, such as polyphenols, flavonoids, terpenoids and alkaloids, can influence ferroptosis via important signalling pathways, such as Nrf2/Keap1, p53, and GPX4. These are promising for combinational therapy due to their ability to cause ferroptotic death in cancer cells, exhibit tumour-specific selectivity and reduce systemic toxicity.
View Article and Find Full Text PDFMol Oncol
September 2025
Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA.
Prostate cancer (PCa) is the second most lethal cancer in men in the US. African American (AA) men have twice the incidence and death rate of European American (EA) men. Advanced PCa shows increased expression and activity of the DNA damage/repair pathway enzyme, poly (ADP-ribose) polymerase 1 (PARP1).
View Article and Find Full Text PDFInt Immunopharmacol
September 2025
The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China. Electronic address: