98%
921
2 minutes
20
Background And Objectives: Preterm birth relates to long-term alterations in cardiac morphology and function. Understanding whether preterm postnatal life is a tractable period of cardiovascular development that can be positively altered by nutrition is relevant to long-term outcomes. We hypothesized that being fed human breast milk during early postnatal life is beneficial to long-term cardiac structure and function in preterm-born individuals compared with infant formulas.
Methods: A total of 926 preterm-born infants originally took part in a randomized controlled trial of postnatal milk-feeding regimens between 1982 and 1985 across 5 different UK centers. Preterm-born individuals were randomly assigned to either breast milk donated by unrelated lactating women or nutrient-enriched formulas. We followed 102 individuals from this cohort: 30 of whom had been randomized to being fed exclusively human milk and 16 to being fed exclusively formula. As a comparison group, we recruited an additional 102 individuals born term to uncomplicated pregnancies. Cardiac morphology and function were assessed by MRI.
Results: Preterm-born individuals fed exclusively human milk as infants had increased left and right ventricular end-diastolic volume index (+9.73%, P = .04 and +18.2%, P < .001) and stroke volume index (+9.79%, P = .05 and +22.1%, P = .01) compared with preterm-born individuals who were exclusively formula fed as infants.
Conclusions: This study provides the first evidence of a beneficial association between breast milk and cardiac morphology and function in adult life in those born preterm and supports promotion of human milk for the care of preterm infants to reduce long-term cardiovascular risk.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6198929 | PMC |
http://dx.doi.org/10.1542/peds.2016-0050 | DOI Listing |
Sci Adv
September 2025
Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
Breastfeeding is essential for reducing infant morbidity and mortality, yet exclusive breastfeeding rates remain low, often because of insufficient milk production. The molecular causes of low milk production are not well understood. Fresh milk samples from 30 lactating individuals, classified by milk production levels across postpartum stages, were analyzed using genomic and microbiome techniques.
View Article and Find Full Text PDFInt J Womens Dermatol
October 2025
Department of Dermatology, Palo Alto Foundation Medical Group, Mountain View, California.
Objective: To assess the safety of tumor necrosis factor inhibitors (TNFi) during pregnancy, specifically in relation to infant infection rates, vaccine efficacy, and vaccine-associated adverse events in infants exposed to TNFi in utero and through breast milk.
Data Sources: A comprehensive literature review was conducted using PubMed and Google Scholar. The review included retrospective studies, prospective studies, and systematic reviews published until June 2024, focusing on TNFi exposure during pregnancy and breastfeeding.
Food Funct
September 2025
Department of Animal Nutrition, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
Sheep milk has gained increasing attention for its compositional similarity to human milk and its abundance of bioactive compounds with nutritional and therapeutic potential. It is rich in proteins, essential fatty acids, vitamins, minerals, immunoglobulins, and hormones, as well as peptides and oligosaccharides with antiviral, antibacterial, anti-inflammatory, and immune-modulatory effects. Despite these benefits, the literature remains fragmented, with limited integration of data on the mechanisms by which these components influence health outcomes, and few comprehensive comparisons with other mammalian milks.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom.
The mammary gland, which primarily develops postnatally, undergoes significant changes during pregnancy and lactation to facilitate milk production. Through the generation and analysis of 480 transcriptomes, we provide the most detailed allelic expression map of the mammary gland, cataloguing cell-type-specific expression from ex-vivo purified cell populations over 10 developmental stages, enabling comparative analysis. The work identifies genes involved in the mammary gland cycle, parental-origin-specific and genetic background-specific expression at cellular and temporal resolution, genes associated with human lactation disorders and breast cancer.
View Article and Find Full Text PDFRes Vet Sci
September 2025
Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, Campus of Excellence Mare Nostrum, University of Murcia, 30100 Murcia, Spain. Electronic address:
Recent years have seen advances in clinical biochemistry of domestic animals which have highlighted comparative differences between species and have also identified fundamental aspects of the biochemical mechanisms in physiological conditions and disease, that have implications across species, including human, health and welfare. From investigations in diverse species using biochemical, immunological, proteomic and metabolomic approaches a series of species particularities and unexpected results for some biomarkers have been made. These observations cover (1) the differences between species in the acute phase protein (APP) response to infection and inflammation; (2) the non-hepatic synthesis and release in the mammary gland, adipose tissue and intestine of APP (3) the response of haptoglobin (HP) as a biomarker for stress; (4) observations in non-mammalian species related to hemopexin and HP; (5) the response of bile acids in milk to mastitis; (6) barley serine protease inhibitors being identified in bovine faeces; (7) alkaline phosphatase being present in bovine nasal secretion; (8) saliva findings with analytes such as adenine deaminase showing different activity between saliva and serum and a detergent-like surfactant protein, latherin being found in equine saliva and sweat and (9) serum enzymes and selective muscle protein reaction of Atlantic salmon as an example of the differences in biochemistry between terrestrial and aquatic species.
View Article and Find Full Text PDF