Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

At low levels, reactive oxygen species (ROS) can act as signaling molecules within cells. When ROS production greatly exceeds the capacity of endogenous antioxidant systems, or antioxidant levels are reduced, ROS levels increase further. The latter is associated with induction of oxidative stress and associated signal transduction and characterized by ROS-induced changes in cellular redox homeostasis and/or damaging effects on biomolecules (e.g. DNA, proteins and lipids). Given the complex mechanisms involved in ROS production and removal, in combination with the lack of reporter molecules that are truly specific for a particular type of ROS, quantification of (sub)cellular ROS levels is a challenging task. In this chapter we describe two strategies to measure ROS: one approach to assess general oxidant levels using the chemical reporter CM-HDCFDA (5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate), and a second approach allowing more specific analysis of cytosolic hydrogen peroxide (HO) levels using protein-based sensors (HyPer and SypHer).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymeth.2016.06.008DOI Listing

Publication Analysis

Top Keywords

ros levels
12
ros production
8
levels
7
ros
7
quantifying ros
4
levels cm-hdcfda
4
cm-hdcfda hyper
4
hyper low
4
low levels
4
levels reactive
4

Similar Publications

Background: The protective function of the tetrandrine (TET)-mediated transient receptor potential vanilloid 2 (TRPV2) channel in myocardial ischemia/reperfusion injury (MI/RI) has been established in numerous investigations. The objective of the current study was to explain how TRPV2 further modulates downstream factors to influence the progression of MI/RI.

Methods: To this end, an MI/RI model in rats and a hypoxia-reoxygenation (H/R) cell model in H9c2 cells were constructed.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) causes a high level of blood glutamate, which triggers host defense by activating oxidative stress and inflammation response. However, the concrete mechanism underlying its exacerbating effects on acute lung injury (ALI) severity remains unknown. In the present study, we aim to demonstrate the special role of N-methyl-D-aspartate receptor (NMDAR) in regulating glutamate-related inflammation signaling to facilitate the sustaining injury.

View Article and Find Full Text PDF

Introduction: 5-Hydroxymethyl furfural (5-HMF) is a furan compound with a molecular formula of CHO. Studies have found that 5-HMF has many pharmacological effects, such as improving hemorheology, anti-inflammatory, antioxidant activity and anti-myocardial ischemia. Identifying the preventive effect of 5-HMF against ischemic stroke and its possible mechanism was the aim of this investigation.

View Article and Find Full Text PDF

Background: Voghera pepper (VP) extracts were demonstrated to have anti-oxidant ability in several cell types.

Purpose: This study aimed to assess whether VP-extracts could lower oxidative stress and modulate thyroid cancer (TC) cells behavior .

Methods: Extracts were analyzed using the LC-DAD-MS system.

View Article and Find Full Text PDF

Fast and early detection of low-dose chemical toxicity is a critical unmet need in toxicology and human health, as conventional 2D culture models often fail to capture subtle cellular responses induced by sub-toxic exposures. Here, we present a bioengineered three-dimensional (3D) electrospun nanofibrous scaffold composed of polycaprolactone that enhances chromatin accessibility and primes fibroblasts for improved sensitivity to low-dose chemical stimuli in a short period. The scaffold mimics the extracellular matrix, providing topographical cues that reduce cytoskeletal tension and promote nuclear deformation, thereby increasing chromatin openness.

View Article and Find Full Text PDF