98%
921
2 minutes
20
An ultrasound through-transmission method to monitor the setting process of injectable calcium phosphate bone cements in body fluids is presented. This method can be used to determine the acoustic properties of the bone cement as it sets, which are linked to its material properties and provide some information about changes occurring within the cement. The development of the methodology of ultrasonic testing and execution of velocity measurements of the longitudinal and transverse waves using the through-transmission method made it possible to determine the material constants of samples during the setting and hardening process of an injectable cement paste in physiological fluids (i.e. the Young's modulus (E), the Poisson ratio (ν) and the shear modulus (G)), and to determine the degree of anisotropy of wave velocity in the samples. A strong advantage of the proposed method is that it is non-destructive, and the same sample can be used to monitor the whole process of the cement setting. The testing was performed on premixed and injectable calcium phosphate (CPC)/chitosan blend, where glycerol was used as a liquid phase. Comparisons between ultrasonic velocity and empirical tests such as compressive strength, porosity measurement, FTIR, SEM and XRD analysis at different days of immersion in Ringer's solutions showed that the ultrasonic velocity can be very useful to provide in situ information about changes occurring within the cement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2016.04.083 | DOI Listing |
J Cosmet Dermatol
September 2025
Independent Researcher, São Paulo, Brazil.
Introduction: Facial aging is a multifactorial process characterized by skin laxity, volume loss, and collagen degradation. Calcium Hydroxyapatite (CaHA) is a versatile biostimulatory filler that can provide both structural support and collagen stimulation. This study evaluates a novel technique using CaHA with tailored dilutions for minimally invasive facial rejuvenation, focusing on key ligamentous structures.
View Article and Find Full Text PDFBiomaterials
September 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
Retinal neovascularization is one of the most prevalent fundus neovascular diseases, affecting vision and potentially leading to severe complications, such as retinal detachment or irreversible blindness. Current treatments primarily involve intravitreal injections (IVT) of anti-vascular endothelial growth factor (anti-VEGF) agents. However, such treatment often requires repeated injections, develop incomplete responses, and are associated with adverse effects.
View Article and Find Full Text PDFFASEB Bioadv
August 2025
Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction Beijing Stomatological Hospital, School of Stomatology, Capital Medical University Beijing China.
Previous studies reported the pro-osteogenic ability of L-Tryptophan (L-Trp) and Calcium-Sensing RCeceptor (CaSR) respectively. Recent researchers found L-Trp could activate CaSR. Therefore, this study investigated the osteogenic mechanisms of L-Trp through CaSR activation.
View Article and Find Full Text PDFGlobal Spine J
September 2025
Department of Orthopaedic, Peking University First Hospital, Beijing, China.
Study DesignProspective Cohort Study.ObjectiveTo compare the effectiveness and safety of perioperative denosumab, bisphosphonates, and a control group in promoting lumbar fusion after midline lumbar fusion (MIDLF) surgery in patients with osteopenia or osteoporosis.MethodsThis prospective cohort study enrolled 54 patients with osteopenia or osteoporosis undergoing MIDLF surgery.
View Article and Find Full Text PDFCardiovasc Res
September 2025
Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Aims: Phospholamban (PLN) acts as an inhibitory regulator of calcium uptake in the sarco-/endoplasmic reticulum (SR) of cardiomyocytes. The pathogenic variant, PLN-R14del, leads to dilated and/or arrhythmogenic cardiomyopathy. Previous studies demonstrated that PLN-targeting antisense oligonucleotides (ASOs) can mitigate disease progression in mice.
View Article and Find Full Text PDF