Publications by authors named "Izabella Rajzer"

This study consisted of the injection molding simulation of polycaprolactone (PCL)-based nanocomposites reinforced with multi-walled carbon nanotubes (MWCNTs) for biomedical implant manufacturing. The simulation was additionally supported by experimental validation. The influence of varying MWCNT concentrations (0.

View Article and Find Full Text PDF

A novel bi-layered scaffold, obtained via 3D printing and electrospinning, was designed to improve osteochondral region reconstruction. The upper electrospun membrane will act as a barrier against unwanted tissue infiltration, while the lower 3D-printed layer will provide a porous structure for tissue ingrowth. Graphene was integrated into the scaffold for its antibacterial properties, and the drug Osteogenon (OST) was added to promote bone tissue regeneration.

View Article and Find Full Text PDF

The use of scaffolds for osteochondral tissue regeneration requires an appropriate selection of materials and manufacturing techniques that provide the basis for supporting both cartilage and bone tissue formation. As scaffolds are designed to replicate a part of the replaced tissue and ensure cell growth and differentiation, implantable materials have to meet various biological requirements, e.g.

View Article and Find Full Text PDF
Article Synopsis
  • The study explored the use of composite filaments, specifically those modified with bioglass and Zn-doped bioglass, as potential materials for developing osteochondral implants.
  • Researchers produced strong, flexible filament sticks through injection molding and investigated how the addition of bioglass influenced the mechanical and biological properties of the resulting scaffolds.
  • Findings indicated that while bioglass-modified scaffolds promoted apatite formation for mineralization, they had lower tensile strength (58-61% less) compared to the original filaments, highlighting the trade-off between mechanical strength and bioactivity.
View Article and Find Full Text PDF

The aim of the present study was a simulation of the injection molding process of polycaprolactone filament sticks for further 3D printing of osteochondral implants. Polycaprolactone data are not available in the data banks of popular injection molding simulation programs. Therefore, thermal and rheological data from the literature were imported to the material database of Solidworks Plastics software to simulate the injection molding process of filament sticks.

View Article and Find Full Text PDF

This work contains an analysis of the impact of modifying a bioresorbable polymer-polycaprolactone (PCL)-with various additives on its antibacterial properties. To this end, samples of PCL filament containing various content levels of graphene (GNP), 0.5%, 5%, 10%, were obtained using injection molding.

View Article and Find Full Text PDF

Monoaldehydes, due to natural origin and therapeutic activity, have attracted great attention for their ability to crosslink chitosan hydrogels for biomedical applications. However, most studies have focused on single-component hydrogels. In this work, chitosan-based hydrogels, crosslinked for the first time with 2,3,4-trihydroxybenzaldehyde (THBA), were modified with pectin (PC), bioactive glass (BG), and rosmarinic acid (RA).

View Article and Find Full Text PDF

Purpose: Innovative biomedical filaments for 3D printing in the form of short and biodegradable composite sticks modified with various additives were used to prepare biomaterials for further nasal implants. As the respiratory tract is considered to be potentially exposed to contamination during the implantation procedure there is a need to modify the implant with an antibacterial additives. The purpose of this work was to analyze the effect of biodegradable polymer - polycaprolactone (PCL) modification with various additives on its antibacterial properties.

View Article and Find Full Text PDF

Currently, the challenge for bone tissue engineering is to design a scaffold that would mimic the structure and biological functions of the extracellular matrix and would be able to direct the appropriate response of cells through electrochemical signals, thus stimulate faster bone formation. The purpose of the presented research was to perform and evaluate PCL/n-HAp scaffolds locally modified with a conductive polymer-polyaniline. The material was obtained using electrospinning, and a simple ink-jet printing method was applied to receive the conductive polyaniline patterns on the surface of the electrospun materials.

View Article and Find Full Text PDF

Introduction: Septal perforations are among the most common craniofacial defects. The causes of septal perforations are varied.

Objectives: The purpose of the study was to develop a septal cartilage implant biomaterial for use in the reconstruction of nasal septal perforations and prepare personalized implants for each patient individually using 3D printing technology.

View Article and Find Full Text PDF

In this work, composite membranes were investigated as future components of a layered implant for the reconstruction of nasal septum. Incorporation of zinc ions into nasal implants could potentially provide antibacterial properties to decrease or eliminate bacterial infections and subsequent surgical complications. Two types of membranes were prepared using an electrospinning method: PCL with bioglass and PCL with bioglass doped with Zn.

View Article and Find Full Text PDF

The purpose of this paper was to fabricate nanofibrous scaffolds containing ossein-hydroxyapatite complex (osteogenon) to mimic the native bone extracellular matrix. Polylactide (PLDL) and polycaprolactone (PCL) were used to prepare scaffolds using electrospinning. Unfortunately, both of these biodegradable polymers have poor cell recognition sites leading to poor cell affinity and adhesion, therefore, based on our previous experience, osteogenon-drug was used at the stage of fibers forming by electrospinning.

View Article and Find Full Text PDF

An ultrasound through-transmission method to monitor the setting process of injectable calcium phosphate bone cements in body fluids is presented. This method can be used to determine the acoustic properties of the bone cement as it sets, which are linked to its material properties and provide some information about changes occurring within the cement. The development of the methodology of ultrasonic testing and execution of velocity measurements of the longitudinal and transverse waves using the through-transmission method made it possible to determine the material constants of samples during the setting and hardening process of an injectable cement paste in physiological fluids (i.

View Article and Find Full Text PDF

In this study gelatin (Gel) modified with calcium phosphate nanoparticles (SG5) and polycaprolactone (PCL) were used to prepare a 3D bi-layer scaffold by collecting electrospun PCL and gelatin/SG5 fibers separately in the same collector. The objective of this study was to combine the desired properties of PCL and Gel/SG5 in the same scaffold in order to enhance mineralization, thus improving the ability of the scaffold to bond to the bone tissue. The scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and the wide angle X-ray diffraction (WAXD) measurements confirmed that SG5 nanoparticles were successfully incorporated into the fibrous gelatin matrix.

View Article and Find Full Text PDF

New nanocomposite membranes with high bioactivity were fabricated using the electrospinning. These nanocomposites combine a degradable polymer poly(L/DL)-lactide and bone cell signaling carbonate nano-hydroxyapatite (n-HAp). Chemical and physical characterization of the membranes using scanning electron microscopy, Fourier transform infrared spectroscopy and the wide angle X-ray diffraction evidenced that nanoparticles were successfully incorporated into the fibers and membrane structure.

View Article and Find Full Text PDF

In the present study we focused on the in vitro and in vivo evaluation of two types of carbon fibres (CFs): hydroxyapatite modified carbon fibres and porous carbon fibres. Porous CFs used as scaffold for tissues regeneration could simultaneously serve as a support for drug delivery or biologically active agents which would stimulate the tissue growth; while addition of nanohydroxyapatite to CFs precursor can modify their biological properties (such as bioactivity) without subsequent surface modifications, making the process cost and time effective. Presented results indicated that fibre modification with HAp promoted formation of apatite on the fibre surface during incubation in simulated body fluid.

View Article and Find Full Text PDF