Considerations in the use of microneedles: pain, convenience, anxiety and safety.

J Drug Target

a Department of BioNano Technology and Gachon BioNano Research Institute , Gachon University, Seongnam , Republic of Korea.

Published: January 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Transdermal delivery using microneedles is gaining increasing attention from pharmaceutical and cosmetic companies as one of the promising drug delivery methods. Microneedle products have recently become available on the market, and some of them are under evaluation for efficacy and safety. To be available in the market for cosmetic and therapeutic use, several factors should be considered, including pain, anxiety, convenience and safety. These factors are summarized and reviewed in this article according to type of microneedle. Various kinds of materials have been used for manufacturing microneedles and developing drug formulations for microneedles. Safety information about materials used for microneedles is summarized in terms of type of microneedles. In addition to their biocompatibility, mechanical safety is also discussed. This review can provide guidelines for designing microneedle products for proper use.

Download full-text PDF

Source
http://dx.doi.org/10.1080/1061186X.2016.1200589DOI Listing

Publication Analysis

Top Keywords

microneedle products
8
safety
5
microneedles
5
considerations microneedles
4
microneedles pain
4
pain convenience
4
convenience anxiety
4
anxiety safety
4
safety transdermal
4
transdermal delivery
4

Similar Publications

A SERS-active microneedle array for rapid and minimally invasive lactic acid detection.

Anal Chim Acta

November 2025

State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China. Electronic address:

Background: During intense exercise, anaerobic metabolism predominantly produces energy in the body, resulting in lactic acid (LA) accumulation, which contributes to muscle fatigue and soreness and may also impair neurological and cardiovascular functions. In endurance sports, the lactate threshold (LT) is a key indicator of an athlete's capacity to clear and utilize LA, directly influencing athletic performance and endurance. Therefore, LA detection is crucial for assessing the physical condition of both athletes and the general population, as well as for optimizing training programs.

View Article and Find Full Text PDF

The accumulation of endogenous advanced glycation end products (AGEs) has been shown to degrade the integrity of the extracellular matrix in the dermis, resulting in signs of aging. Resurfacing procedures are a first-line treatment option. Post-procedure skin care is integral in achieving optimal results with minimal downtime.

View Article and Find Full Text PDF

Background: The present study investigates the relationship between alopecia areata (AA) and intestinal microecology, examining the effect of microneedling on the microecology of alopecia areata.

Methods: An animal model of AA was established using imiquimod-induced C3H/HeJ mice. Halometasone was applied topically every 2 days for 2 weeks after a hand-held dermal microneedling treatment.

View Article and Find Full Text PDF

Development and Evaluation of Dual Microneedle Array Patch for Sequential Intradermal Delivery of Adjuvant and Antigen.

Pharm Res

September 2025

Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University, Seongnam, Gyeonggi-Do, 13120, Republic of Korea.

Purpose: Adjuvants are critical for enhancing immune responses to recombinant protein-based vaccines, which typically exhibit weak immunogenicity. Microneedle array patches (MAPs) offer a promising method for intradermal delivery, but conventional Co-Delivery MAPs (containing antigen and adjuvant together) have limited loading capacity and potential undesirable interactions. Adjuvants may also trigger adverse reactions in sensitive populations.

View Article and Find Full Text PDF

Recent advances in three-dimensional (3D) biological brain models in vitro and ex vivo are creating new opportunities to understand the complexity of neural networks but pose the technological challenge of obtaining high-throughput recordings of electrical activity from multiple sites in 3D at high spatiotemporal resolution. This cannot be achieved using planar multi-electrode arrays (MEAs), which contact just one side of the neural structure. Moreover, the specimen adhesion to planar MEAs limits fluid perfusion along with tissue viability and drug application.

View Article and Find Full Text PDF