Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Resonance Raman spectroscopy was used to evaluate the structure of light-harvesting chlorophyll (Chl) a/b complexes of photosystem II (LHCII), reconstituted from wild-type (WT) and mutant apoproteins over-expressed in Escherichia coli. The point mutations involved residue S123, exchanged for either P (S123P) or G (S123G). In all reconstituted proteins, lutein 2 displayed a distorted conformation, as it does in purified LHCII trimers. Reconstituted WT and S123G also exhibited a conformation of bound neoxanthin (Nx) molecules identical to the native protein, while the S123P mutation was found to induce a change in Nx conformation. This structural change of neoxanthin is accompanied by a blue shift of the absorption of this carotenoid molecule. The interactions assumed by (and thus the structure of the binding sites of) the bound Chls b were found identical in all the reconstituted proteins, and only marginally perturbed as compared to purified LHCII. The interactions assumed by bound Chls a were also identical in purified LHCII and the reconstituted WT. However, the keto carbonyl group of one Chl a, originally free-from-interactions in WT LHCII, becomes involved in a strong H-bond with its environment in LHCII reconstituted from the S123P apoprotein. As the absorption in the Qy region of this protein is identical to that of the LHCII reconstituted from the WT apoprotein, we conclude that the interaction state of the keto carbonyl of Chl a does not play a significant role in tuning the binding site energy of these molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbabio.2016.06.001DOI Listing

Publication Analysis

Top Keywords

lhcii reconstituted
16
purified lhcii
12
binding sites
8
lhcii
8
resonance raman
8
raman spectroscopy
8
reconstituted proteins
8
interactions assumed
8
bound chls
8
chls identical
8

Similar Publications

Chlorophyll (Chl ) can be successfully introduced in reconstituted LHCII with minimal interference with the energy equilibration processes within the complex, thereby facilitating the development of plant light-harvesting complexes (LHCs) with enhanced capabilities for light absorption in the far-red spectrum. In this study, we address whether Chl introduction affects LHCII's ability to protect itself from photo-oxidation, a crucial point for successfully exploiting modified complexes to extend light harvesting in plants. Here we focus on incorporating Chl into Lhcb1 (the monomeric unit of LHCII), specifically studying the Chl triplet quenching by carotenoids using time-resolved electron paramagnetic resonance (TR-EPR) and optically detected magnetic resonance (ODMR).

View Article and Find Full Text PDF

Structure-based validation of recombinant light-harvesting complex II.

PNAS Nexus

September 2024

Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.

Light-harvesting complex II (LHCII) captures sunlight and dissipates excess energy to drive photosynthesis. To elucidate this mechanism, the individual optical properties of pigments in the LHCII protein must be identified. In vitro reconstitution with apoproteins synthesized by and pigment-lipid mixtures from natural sources is an effective approach; however, the local environment surrounding each pigment within reconstituted LHCII (rLHCII) has only been indirectly estimated using spectroscopic and biochemical methods.

View Article and Find Full Text PDF

At the origin of the selectivity of the chlorophyll-binding sites in Light Harvesting Complex II (LHCII).

Int J Biol Macromol

July 2023

Department of Physics and Astronomy, and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, the Netherlands. Electronic address:

The photosynthetic light-harvesting complexes (LHCs) are responsible for light absorption due to their pigment-binding properties. These pigments are primarily Chlorophyll (Chl) molecules of type a and b, which ensure an excellent coverage of the visible light spectrum. To date, it is unclear which factors drive the selective binding of different Chl types in the LHC binding pockets.

View Article and Find Full Text PDF

Lipid-Enhanced Photoprotection of LHCII in Membrane Nanodisc by Reducing Chlorophyll Triplet Production.

J Phys Chem B

April 2022

Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872 Beijing, China.

Carotenoid (Car) quenching chlorophyll triplet state (Chl *), an unwanted photosensitizer yielding harmful reactive oxygen species, is crucial for the survival of oxygenic photosynthetic organisms. For the major light-harvesting complex of photosystem II (LHCII) in isolated form, Chl * is deactivated via sub-nanosecond Chl-to-Car triplet excitation energy transfer by lutein in the central domain of LHCII; however, the mechanistic difference from LHCII in vivo remains to be explored. To investigate the intrinsic Car-photoprotection properties of LHCII in a bio-mimicking circumstance, we reconstituted trimeric spinach LHCII into the discoidal membrane of nanosize made from l-α-phosphatidylcholine and examined the triplet excited dynamics.

View Article and Find Full Text PDF

The xanthophyll cycle in the antenna of photosynthetic organisms under light stress is one of the most well-known processes in photosynthesis, but its role is not well understood. In the xanthophyll cycle, violaxanthin (Vio) is reversibly transformed to zeaxanthin (Zea) that occupies Vio binding sites of light-harvesting antenna proteins. Higher monomer/trimer ratios of the most abundant light-harvesting protein, the light-harvesting complex II (LHCII), usually occur in Zea accumulating membranes and have been observed in plants after prolonged illumination and during high-light acclimation.

View Article and Find Full Text PDF