98%
921
2 minutes
20
The threespine stickleback fish has emerged as a powerful system to study the genetic basis of a wide variety of morphological, physiological, and behavioral phenotypes. The remarkably diverse phenotypes that have evolved as marine populations adapt to countless freshwater environments, combined with the ability to cross marine and freshwater forms, provide a rare vertebrate system in which genetics can be used to map genomic regions controlling evolved traits. Excellent genomic resources are now available, facilitating molecular genetic dissection of evolved changes. While mapping experiments generate lists of interesting candidate genes, functional genetic manipulations are required to test the roles of these genes. Gene regulation can be studied with transgenic reporter plasmids and BACs integrated into the genome using the Tol2 transposase system. Functions of specific candidate genes and cis-regulatory elements can be assessed by inducing targeted mutations with TALEN and CRISPR/Cas9 genome editing reagents. All methods require introducing nucleic acids into fertilized one-cell stickleback embryos, a task made challenging by the thick chorion of stickleback embryos and the relatively small and thin blastomere. Here, a detailed protocol for microinjection of nucleic acids into stickleback embryos is described for transgenic and genome editing applications to study gene expression and function, as well as techniques to assess the success of transgenesis and recover stable lines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4942152 | PMC |
http://dx.doi.org/10.3791/54055 | DOI Listing |
Stem Cell Res
September 2025
Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf 40225, Germany. Electronic address:
Pathogenic variants in the gene COQ4 cause primary coenzyme Q deficiency, which is associated with symptoms ranging from early epileptic encephalopathy up to adult-onset ataxia-spasticity spectrum disease. We genetically modified commercially available wild-type iPS cells by using a CRISPR/Cas9 approach to create heterozygous and homozygous isogenic cell lines carrying the disease-causing COQ4 variants c.458C > T, p.
View Article and Find Full Text PDFGenetics
September 2025
Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
Protein translation regulation is critical for cellular responses and development, yet how elongation stage disruptions shape these processes remains incompletely understood. Here, we identify a single amino acid substitution (P55Q) in the ribosomal protein RPL-36A of Caenorhabditis elegans that confers complete resistance to the elongation inhibitor cycloheximide (CHX). Heterozygous animals carrying both wild-type RPL-36A and RPL-36A(P55Q) develop normally but show intermediate CHX resistance, indicating a partial dominant effect.
View Article and Find Full Text PDFClin Appl Thromb Hemost
September 2025
Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.
Hemophilia, an X-linked monogenic disorder, arises from mutations in the or genes, which encode clotting factor VIII (FVIII) or clotting factor IX (FIX), respectively. As a prominent hereditary coagulation disorder, hemophilia is clinically manifested by spontaneous hemorrhagic episodes. Severe cases may progress to complications such as stroke and arthropathy, significantly compromising patients' quality of life.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
September 2025
Office of Gene Therapy, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.
genome editing with CRISPR-Cas9 systems is generating worldwide attention and enthusiasm for the possible treatment of genetic disorders. However, the consequences of potential immunogenicity of the bacterial Cas9 protein and the AAV capsid have been the subject of considerable debate. Here, we model the antigen presentation in cells after gene editing by transduction of a human cell line with an AAV2 vector that delivers the Cas9 transgene.
View Article and Find Full Text PDFClin Kidney J
September 2025
Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy.
Genome editing technologies, particularly clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, have transformed biomedical research by enabling precise genetic modifications. Due to its efficiency, cost-effectiveness and versatility, CRISPR has been widely applied across various stages of research, from fundamental biological investigations in preclinical models to potential therapeutic interventions. In nephrology, CRISPR represents a groundbreaking tool for elucidating the molecular mechanisms underlying kidney diseases and developing innovative therapeutic approaches.
View Article and Find Full Text PDF