Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Respiratory motion is a significant obstacle to the use of quantitative perfusion in clinical practice. Increasingly complex motion correction algorithms are being developed to correct for respiratory motion. However, the impact of these improvements on the final diagnosis of ischemic heart disease has not been evaluated. The aim of this study was to compare the performance of four automated correction methods in terms of their impact on diagnostic accuracy. Three strategies for motion correction were used: (1) independent translation correction for all slices, (2) translation correction for the basal slice with transform propagation to the remaining two slices assuming identical motion in the remaining slices, and (3) rigid correction (translation and rotation) for the basal slice. There were no significant differences in diagnostic accuracy between the manual and automatic motion-corrected datasets ([Formula: see text]). The area under the curve values for manual motion correction and automatic motion correction were 0.93 and 0.92, respectively. All of the automated motion correction methods achieved a comparable diagnostic accuracy to manual correction. This suggests that the simplest automated motion correction method (method 2 with translation transform for basal location and transform propagation to the remaining slices) is a sufficiently complex motion correction method for use in quantitative myocardial perfusion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4865478PMC
http://dx.doi.org/10.1117/1.JMI.3.2.024002DOI Listing

Publication Analysis

Top Keywords

motion correction
32
diagnostic accuracy
16
correction
13
remaining slices
12
motion
11
respiratory motion
8
complex motion
8
correction methods
8
basal slice
8
transform propagation
8

Similar Publications

Background: Evidence supporting surgery in elderly patients with distal radius fractures is limited, but displaced fractures may benefit from surgery. This study aimed to determine whether casting is noninferior to surgery for patients aged 65 years or older with substantially displaced intra-articular (AO type C) distal radius fractures.

Methods: This multicenter randomized controlled noninferiority trial included 138 patients (mean age 76 years, SD 6.

View Article and Find Full Text PDF

Full Free-Breathing Cardiac MRI: Enhancing Efficiency and Image Quality in Clinical Practice.

J Cardiovasc Magn Reson

September 2025

Department of Magnetic Resonance Imaging, Fuwai Hospital and National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100037, China; Key Laboratory of Cardiovascular Imaging, Chinese Academy of Medical Sciences, Beijing 100730, China.

Background: Conventional cardiac magnetic resonance (CMR) examinations require patients to repeatedly hold their breath, which can reduce examination efficiency and pose challenges for patients unable to do so. This study aimed to demonstrate the feasibility and effectiveness of a full free-breathing CMR protocol in clinical practice.

Methods: Patients prospectively enrolled in this study underwent a full free-breathing CMR exam on a 3T scanner between June 1 and June 30, 2024.

View Article and Find Full Text PDF

Cardiovascular magnetic resonance imaging: Principles and advanced techniques.

Prog Nucl Magn Reson Spectrosc

September 2025

School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile; Institute for Biological and Medical

Cardiovascular magnetic resonance (CMR) imaging is an established non-invasive tool for the assessment of cardiovascular diseases, which are the leading cause of death globally. CMR provides dynamic and static multi-contrast and multi-parametric images, including cine for functional evaluation, contrast-enhanced imaging and parametric mapping for tissue characterization, and MR angiography for the assessment of the aortic, coronary and pulmonary circulation. However, clinical CMR imaging sequences still have some limitations such as the requirement for multiple breath-holds, incomplete spatial coverage, complex planning and acquisition, low scan efficiency and long scan times.

View Article and Find Full Text PDF

Purpose: To develop a rapid 2D free-running myocardial mapping technique that is robust to through-plane respiratory motion.

Methods: A free-running golden angle radial sequence consisting of encoding and self-navigated auto motion calibration (SNAC) was developed. The encoding adopted inversion recovery (IR) prepared interleaved multi-slice acquisition with optimized inter-slice gap to ensure a uniform excitation of the middle slice regardless of through-plane respiratory motion.

View Article and Find Full Text PDF

In March of 2025, 145 attendees convened at the Hub for Clinical Collaboration of the Children's Hospital of Philadelphia for the inaugural International Society for Magnetic Resonance in Medicine (ISMRM) Body MRI Study Group workshop entitled "Body MRI: Unsolved Problems and Unmet Needs." Approximately 24% of the attendees were MD or MD/PhD's, 45% were PhD's, and 30% were early-career trainees and postdoctoral associates. Among the invited speakers and moderators, 28% were from outside the United States, with a 40:60% female-to-male ratio.

View Article and Find Full Text PDF