Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Tobacco use is one of the leading preventable global health problems producing nearly 6 million smoking-related deaths per year. Interventions delivered via text messaging (short message service, SMS) may increase access to educational and support services that promote smoking cessation across diverse populations.
Objective: The purpose of this meta-analysis is to (1) evaluate the efficacy of text messaging interventions on smoking outcomes, (2) determine the robustness of the evidence, and (3) identify moderators of intervention efficacy.
Methods: Electronic bibliographic databases were searched for records with relevant key terms. Studies were included if they used a randomized controlled trial (RCT) to examine a text messaging intervention focusing on smoking cessation. Raters coded sample and design characteristics, and intervention content. Summary effect sizes, using random-effects models, were calculated and potential moderators were examined.
Results: The meta-analysis included 20 manuscripts with 22 interventions (N=15,593; 8128 (54%) women; mean age=29) from 10 countries. Smokers who received a text messaging intervention were more likely to abstain from smoking relative to controls across a number of measures of smoking abstinence including 7-day point prevalence (odds ratio (OR)=1.38, 95% confidence interval (CI)=1.22, 1.55, k=16) and continuous abstinence (OR=1.63, 95% CI=1.19, 2.24, k=7). Text messaging interventions were also more successful in reducing cigarette consumption relative to controls (d+=0.14, 95% CI=0.05, 0.23, k=9). The effect size estimates were biased when participants who were lost to follow-up were excluded from the analyses. Cumulative meta-analysis using the 18 studies (k=19) measuring abstinence revealed that the benefits of using text message interventions were established only after only five RCTs (k=5) involving 8383 smokers (OR=1.39, 95% CI=1.15, 1.67, P<.001). The inclusion of the subsequent 13 RCTs (k=14) with 6870 smokers did not change the established efficacy of text message interventions for smoking abstinence (OR=1.37, 95% CI=1.25, 1.51, P<.001). Smoking abstinence rates were stronger when text messaging interventions (1) were conducted in Asia, North America, or Europe, (2) sampled fewer women, and (3) recruited participants via the Internet.
Conclusions: The evidence for the efficacy of text messaging interventions to reduce smoking behavior is well-established. Using text messaging to support quitting behavior, and ultimately long-term smoking abstinence, should be a public health priority.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4893152 | PMC |
http://dx.doi.org/10.2196/mhealth.5436 | DOI Listing |