98%
921
2 minutes
20
Hypotonia in a newborn presents a diagnostic challenge for clinicians. It is an important clinical feature that may indicate an underlying systemic illness or neurological problem at the level of the central or peripheral nervous system. It is important to know the different presentations of hypotonia and to have the knowledge of the diagnostic work up which requires multidisciplinary assessment and input and the prognostic implications of these disorders. This review article presents a structured approach highlighting initial assessment, examination, and management of a neonate with generalized hypotonia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4862282 | PMC |
http://dx.doi.org/10.4103/1817-1745.181250 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Martin A. Fisher School of Physics, Brandeis University, Waltham, MA 02453.
Programmable self-assembly has recently enabled the creation of complex structures through precise control of the interparticle interactions and the particle geometries. Targeting ever more structurally complex, dynamic, and functional assemblies necessitates going beyond the design of the structure itself, to the measurement and control of the local flexibility of the intersubunit connections and its impact on the collective mechanics of the entire assembly. In this study, we demonstrate a method to infer the mechanical properties of multisubunit assemblies using cryogenic electron microscopy (cryo-EM) and RELION's multi-body refinement.
View Article and Find Full Text PDFAcc Chem Res
September 2025
Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada.
ConspectusMolecular photochemistry, by harnessing the excited states of organic molecules, provides a platform fundamentally distinct from thermochemistry for generating reactive open-shell or spin-active species under mild conditions. Among its diverse applications, the resurgence of the Minisci-type reaction, a transformation historically reliant on thermally initiated radical conditions, has been fueled by modern photochemical strategies with improved efficiency and selectivity. Consequently, the photochemical Minisci-type reaction ranks among the most enabling methods for C()-H functionalizations of heteroarenes, which are of particular significance in medicinal chemistry for the rapid diversification of bioactive scaffolds.
View Article and Find Full Text PDFNanoscale
September 2025
School of Materials Science and Engineering, Beihang University, Beijing 100191, China.
The challenge of photocatalytic hydrogen production has motivated a targeted search for MXenes as a promising class of materials for this transformation because of their high mobility and high light absorption. High-throughput screening has been widely used to discover new materials, but the relatively high cost limits the chemical space for searching MXenes. We developed a deep-learning-enabled high-throughput screening approach that identified 14 stable candidates with suitable band alignment for water splitting from 23 857 MXenes.
View Article and Find Full Text PDFAppl Biochem Biotechnol
September 2025
School of Biological Sciences, University of the Punjab, Quaid-E-Azam Campus, P.O. 54590, Lahore, Pakistan.
Recombinant DNA technology is widely used to produce industrially and pharmaceutically important proteins. In silico analysis, performed before executing wet lab experiments has been greatly helpful in this connection. A shift in protein analysis has been observed over the past decade, driven by advancements in bioinformatics databases, tools, software, and web servers.
View Article and Find Full Text PDFApoptosis
September 2025
The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 182 Chunhui Road, Longmatan District, Luzhou, 646000, China.
Diabetic cardiomyopathy (DCM) is a severe cardiovascular complication of diabetes mellitus, characterized by pathological changes such as cardiomyocyte hypertrophy, necrosis, and myocardial fibrosis, which can ultimately lead to heart failure. However, its underlying mechanisms remain incompletely understood, limiting the development of effective therapeutic approaches. In recent years, the critical roles of oxidative stress and ferroptosis in the pathogenesis of DCM have attracted increasing attention.
View Article and Find Full Text PDF