Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The present study aimed to explore and describe the properties of bacterial cellulose (BC) membranes obtained from three different strains of Gluconacetobacter xylinus for 72, 120, and 168 h, used as a carrier support for the immobilization of Saccharomyces cerevisiae. The experiments also included the analysis of glucose consumption and alcohol production during the fermentation process displayed by yeasts immobilized on the BC surface. The results of the present study demonstrate that the number of immobilized yeast cells is dependent on the type of cellulose-synthesizing strain, cellulose form, and duration of its synthesis. The BC in the form of wet membranes obtained after 3 days of synthesis displayed the most favorable properties as a carrier for yeast immobilization. The immobilization of yeast cells on BC, regardless of its form, increased the amount of the produced alcohol as compared to free cells. The yeast cells immobilized in BC were able to multiply on its surface during the fermentation process.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-016-2134-4DOI Listing

Publication Analysis

Top Keywords

yeast cells
12
bacterial cellulose
8
strains gluconacetobacter
8
gluconacetobacter xylinus
8
yeast immobilization
8
fermentation process
8
yeast
5
wet dry
4
dry forms
4
forms bacterial
4

Similar Publications

Overflow metabolism refers to the widespread phenomenon of cells excreting metabolic by-products into their environment. Although overflow is observed in virtually all living organisms, it has been studied independently and given different names in different species. This review highlights emerging evidence that overflow metabolism is governed by common principles in prokaryotic and eukaryotic organisms.

View Article and Find Full Text PDF

Modeling the influence of the microbial loading level of fluidized bed granules on physical-mechanical and microbiological tablet properties.

Eur J Pharm Biopharm

September 2025

Technische Universität Braunschweig, Institute for Particle Technology, Volkmaroder Straße 5, 38104 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany.

In order to be able to administer efficient probiotic formulations, it is necessary to process the respective microorganisms gently into suitable dosage forms such as tablets maintaining their viability. In previous studies, the process chain consisting of fluidized bed granulation for life-sustaining drying of Saccharomyces cerevisiae as well as subsequent processing into tablets was investigated. Granules based on dicalcium phosphate (DCP), lactose (LAC) and microcrystalline cellulose (MCC) as carrier materials were produced and tableted, and physical-mechanical as well as microbiological tablet properties were evaluated.

View Article and Find Full Text PDF

Tropomyosin is an actin-binding protein (ABP) which protects actin filaments from cofilin-mediated disassembly. Distinct tropomyosin isoforms have long been hypothesized to differentially sort to subcellular actin networks and impart distinct functionalities. Nevertheless, a mechanistic understanding of the interplay between Tpm isoforms and their functional contributions to actin dynamics has been lacking.

View Article and Find Full Text PDF

Biofilms are a primary form of device-associated infections and typically exhibit high tolerance to antimicrobial agents. In biofilms formed by multiple microbial species, microorganisms may show even greater tolerance, complicating treatment. There is evidence that meropenem (MEPM) tolerance in is increased in dual-species biofilms with , and effective treatments have not been established.

View Article and Find Full Text PDF

Escherichia coli strain O55 contains two cryptic plasmids that depend on each other to replicate.

Arch Microbiol

September 2025

División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Zip Code 36050, Guanajuato, Mexico.

Plasmids are fundamental to molecular biology and biotechnology, playing a crucial role in bacterial evolution. Some plasmids are linked to complex cellular dynamics, including pathogenicity islands, antibiotic resistance, and gene mobilization. This study reports the isolation and sequencing of two cryptic plasmids with different electrophoretic mobilities from the Escherichia coli clinical isolate O55.

View Article and Find Full Text PDF