98%
921
2 minutes
20
The in vitro migration of keratinocyte cell sheets displays behavioral and biochemical similarities to the in vivo wound healing response of keratinocytes in animal model systems. In both cases, ligand-dependent Epidermal Growth Factor Receptor (EGFR) activation is sufficient to elicit collective cell migration into the wound. Previous mathematical modeling studies of in vitro wound healing assays assume that physical connections between cells have a hindering effect on cell migration, but biological literature suggests a more complicated story. By combining mathematical modeling and experimental observations of collectively migrating sheets of keratinocytes, we investigate the role of cell-cell adhesion during in vitro keratinocyte wound healing assays. We develop and compare two nonlinear diffusion models of the wound healing process in which cell-cell adhesion either hinders or promotes migration. Both models can accurately fit the leading edge propagation of cell sheets during wound healing when using a time-dependent rate of cell-cell adhesion strength. The model that assumes a positive role of cell-cell adhesion on migration, however, is robust to changes in the leading edge definition and yields a qualitatively accurate density profile. Using RNAi for the critical adherens junction protein, α-catenin, we demonstrate that cell sheets with wild type cell-cell adhesion expression maintain migration into the wound longer than cell sheets with decreased cell-cell adhesion expression, which fails to exhibit collective migration. Our modeling and experimental data thus suggest that cell-cell adhesion promotes sustained migration as cells pull neighboring cells into the wound during wound healing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6089377 | PMC |
http://dx.doi.org/10.1016/j.jtbi.2016.04.015 | DOI Listing |
PRX Life
February 2025
Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA.
When cells in a primary tumor work together to invade into nearby tissue, this can lead to cell dissociations-cancer cells breaking off from the invading front-leading to metastasis. What controls the dissociation of cells and whether they break off singly or in small groups? Can this be determined by cell-cell adhesion or chemotactic cues given to cells? We develop a physical model for this question, based on experiments that mimic aspects of cancer cell invasion using microfluidic devices with microchannels of different widths. Experimentally, most dissociation events ("ruptures") involve single cells breaking off, but we observe some ruptures of large groups (~20 cells) in wider channels.
View Article and Find Full Text PDFEnviron Int
September 2025
Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States. Electronic address:
Background: Although per- and polyfluoroalkyl substances (PFAS) have been linked to chronic liver diseases, the specific cellular and molecular mechanisms by which different PFAS contribute to human liver dysfunction remain unclear. This study aims to elucidate those mechanisms.
Methods: We exposed a multi-donor human liver spheroid model composed of multiple cell types to 20 µM of PFHxS, PFOA, PFOS, or PFNA for seven days, followed by single-cell RNA sequencing and lipid staining.
Rev Sci Instrum
September 2025
Leiden Institute of Physics, Leiden University, 2333CC Leiden, The Netherlands.
Whether at the molecular or cellular scale in organisms, cell-cell adhesion adapts to external mechanical cues arising from the static environment of cells and from dynamic interactions between neighboring cells. Cell-cell adhesion needs to resist detachment forces to secure the integrity and internal organization of organisms. In the past, various techniques have been developed to characterize adhesion properties of molecules and cells in vitro and to understand how cells sense and probe their environment.
View Article and Find Full Text PDFJ Cell Sci
September 2025
Department of Biochemistry, University of Illinois at Urbana-Champaign, IL, USA.
We present evidence that the association of Epithelial (E)-cadherin (CHD1) extracellular domain and epidermal growth factor receptor (EGFR, ErbB1) is obligatory for cadherin force transduction signaling. E-cadherin and EGFR associate at cell surfaces, independent of their cytoplasmic domains, and tension on E-cadherin activates EGFR signaling. Using engineered cadherin mutants that disrupt co-immunoprecipitation with EGFR, but not adhesion, we show that the hetero-receptor complex is required to mechanically activate signaling and downstream cytoskeletal remodeling at cadherin adhesions.
View Article and Find Full Text PDFJ Biomed Sci
September 2025
Laboratori 4106, Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Feixa Llarga S/N, 08907, Hospitalet de Llobregat, Catalunya, Spain.
Background: Exposure of mammals to ototoxic compounds causes hair cell (HC) loss in the vestibular sensory epithelia of the inner ear. In chronic exposure models, this loss often occurs by extrusion of the HC from the sensory epithelium towards the luminal cavity. HC extrusion is preceded by several steps that begin with detachment and synaptic uncoupling of the cells from the afferent terminals of their postsynaptic vestibular ganglion neurons.
View Article and Find Full Text PDF