98%
921
2 minutes
20
The ventral and dorsal striatum are critical substrates of reward processing and motivation and have been repeatedly linked to addictive disorders, including nicotine dependence. However, little is known about how functional connectivity between these and other brain regions is modulated by smoking withdrawal and may contribute to relapse vulnerability. In the present study, 37 smokers completed resting state fMRI scans during both satiated and 24-h abstinent conditions, prior to engaging in a 3-week quit attempt supported by contingency management. We examined the effects of abstinence condition and smoking outcome (lapse vs non-lapse) on whole-brain connectivity with ventral and dorsal striatum seed regions. Results indicated a significant condition by lapse outcome interaction for both right and left ventral striatum seeds. Robust abstinence-induced increases in connectivity with bilateral ventral striatum were observed across a network of regions implicated in addictive disorders, including insula, superior temporal gyrus, and anterior/mid-cingulate cortex among non-lapsers; the opposite pattern was observed for those who later lapsed. For dorsal striatum seeds, 24-h abstinence decreased connectivity across both groups with several regions, including medial prefrontal cortex, posterior cingulate cortex, hippocampus, and supplemental motor area. These findings suggest that modulation of striatal connectivity with the cingulo-insular network during early withdrawal may be associated with smoking cessation outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4987851 | PMC |
http://dx.doi.org/10.1038/npp.2016.56 | DOI Listing |
Eur Arch Psychiatry Clin Neurosci
September 2025
Department of Psychiatry, University of Pittsburgh, 121 Meyran Avenue, Pittsburgh, PA, 15213, USA.
Psychotic-like experiences (PLEs) -subclinical experiences or symptoms that resemble psychosis, such as hallucinations and delusional thoughts-often emerge during adolescence and are predictive of serious psychopathology. Understanding PLEs during adolescence is crucial due to co-occurring developmental changes in neural reward systems that heighten the risk for psychotic-related and affective psychopathology, especially in those with a family history of severe mental illness (SMI). We examined associations among PLEs, clinical symptoms, and neural reward function during this critical developmental period.
View Article and Find Full Text PDFJ Neurosurg
September 2025
4Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Champaign, Illinois.
Objective: Major depressive disorder is a significant cause of disability, impacting an estimated 193 million individuals worldwide. Forty percent are estimated to have little to no response to standard pharmacological therapies. Deep brain stimulation (DBS) has emerged as a favorable neuromodulation therapy for treatment-resistant depression, but it remains unclear which brain targets are optimal.
View Article and Find Full Text PDFClinical apathy might result from either a diminished willingness to exert effort for known rewards or from reduced motivation to explore potentially beneficial future opportunities. To identify the underlying cognitive and neural bases of apathy, we used task-based fMRI to examine motivated choice computations in patients with chronic traumatic brain injury (TBI)-a condition frequently associated with apathy-and compared their behavior and neural activity to that of healthy controls (CTRLs). Participants performed two choice tasks involving distinct types of motivational tradeoffs: i) An effort-value tradeoff task (the 'Apples Task') requiring them to decide how much physical effort they were willing to exert for varying reward magnitudes, and ii) An explore-exploit tradeoff task (the 'Novelty-Bandit Task') requiring them to choose between exploiting options with a known history of reward or exploring novel options with uncertain but potentially higher future value.
View Article and Find Full Text PDFStructural brain abnormalities in psychosis are well-replicated but heterogenous posing a barrier to uncovering the pathophysiology, etiology, and treatment of psychosis. To parse neurostructural heterogeneity and assess for the presence of anatomically-derived subtypes, we applied a data-driven method, similarity network fusion (SNF), to structural neuroimaging data in a broad cohort of individuals with psychosis (schizophrenia spectrum disorders (SSD) n=280; bipolar disorder with psychotic features (BD) n=101). SNF identified two transdiagnostic subtypes in psychosis (subtype 1: n=158 SSD, n=75 BD; subtype 2: n=122 SSD, n=26 BD) that exhibited divergent patterns of abnormal cortical surface area and subcortical volumes.
View Article and Find Full Text PDFJ Affect Disord
September 2025
Health Management Center, Xiangya Hospital, Central South University, Changsha, China. Electronic address:
Background: Evidence demonstrated that frontostriatal disruption may result in anhedonia in major depressive disorder (MDD). However, limited research examined the correlations of frontostriatal connectivity and anhedonia, especially in first-episode, treatment-naïve major depressive disorder.
Method: Resting-state functional magnetic resonance imaging (rs-fMRI) was obtained from 44 first-episode, treatment-naïve young adult patients with MDD and 50 healthy controls (HCs).