98%
921
2 minutes
20
The direct, catalytic, asymmetric α-functionalization of acyclic esters constitutes a significant challenge in the area of asymmetric catalysis, particularly where the configurational integrity of the products is problematic. Through the unprecedented merger of two independent, yet complementary, catalysis events it has been possible to facilitate the direct asymmetric α-allylation of readily available aryl acetic acid esters. Since enantioselection is determined by the nucleophile, this conceptual approach to cooperative catalysis constitutes a potentially general solution to the direct catalytic asymmetric α-functionalization of acyclic esters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.6b01694 | DOI Listing |
Inorg Chem
September 2025
Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
Selective oxidation of benzylic C(sp)-H bonds to ketones is critical to the production of fine chemicals but typically requires toxic/precious metal catalysts under harsh conditions. While iron-based complexes have recently served as catalysts for photocatalytic C-H bond activation, most systems operate via homogeneous catalysis. Developing a light-driven strategy under visible light with O as an oxidant is of major importance.
View Article and Find Full Text PDFNat Commun
September 2025
Department of Chemistry, Institute of Silicon Chemistry and Catalysis Research Center, TUM School of Natural Sciences, Technische Universität München, Garching bei München, Germany.
Catalytic reduction of quinolines has gained continuous interest in both academia and industry, providing direct and efficient access to tetrahydroquinolines or 1,2-dihydroquinolines. The catalytic preparation of tetrahydroquinolines has been extensively studied by transition metal complexes. By contrast, the related catalytic synthesis of 1,2-dihydroquinolines remains underdeveloped due to the difficulties in achieving precise control over both chemo- and regioselectivity.
View Article and Find Full Text PDFOrg Lett
September 2025
School of Chemical Sciences, National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute, Bhubaneswar 752050, India.
Selective reduction of heteroaromatic compounds to partially hydrogenated, dearomatized molecules is a tantalizing task. A well-defined, air stable, and pyridine-based Cu(II) NNN pincer complex is developed, which catalyzes selective 1,2-reduction of quinolines. The unstable 1,2-hydrogenated quinolines are transformed into the corresponding amides and isolated in good yields.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
Fabrication of water-stable and atomically dispersed ruthenium catalysts for sustainable borrowing hydrogenation (BH) reactions is a long-standing challenge. Herein, we developed an atomically dispersed Ru catalyst that has been successfully employed for BH reactions in aqueous micelles under mild conditions. The micellar cooperativity with the hydrophobic knitted aryl polymers (KAPs) led to the formation of microconfinements, which act as the confined space for catalysis in water.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.
Achieving precise regioselectivity in the hydroamination of alkenes is in high demand yet remains a longstanding challenge, particularly when electronically competing β-substituents are present. Here, we report a dual boron/iron catalytic system that enables the unprecedented hydroamidation of α,β-unsaturated esters to exclusively access α-amidated esters under mild conditions. The strategy harnesses the Lewis acidity of B(CF) to rapidly generate reactive silyl ketene acetal intermediates, which are subsequently intercepted by in situ generated iron nitrenoids.
View Article and Find Full Text PDF