A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Human pseudoarthrosis tissue contains cells with osteogenic potential. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Nonunion is a challenging problem that may occur after certain bone fractures. The treatment of nonunion is closely related to its type. To develop an effective treatment strategy for each type of nonunion, biological analysis of nonunion tissue is essential. Pseudoarthrosis is a distinct pathologic entity of nonunion. To understand the pathology of pseudoarthrosis, we investigated the cellular properties of pseudoarthrosis tissue-derived cells (PCs) in vitro.

Patients And Methods: PCs were isolated from four patients with pseudoarthrosis and cultured. Cells were evaluated for cell-surface protein expression by using flow cytometry. Osteogenic differentiation capacity was assessed by using Alizarin Red S staining, alkaline phosphatase (ALP) activity assay, and reverse transcription polymerase chain reaction (RT-PCR) after osteogenic induction. Chondrogenic differentiation capacity was assessed via Safranin O staining and RT-PCR after chondrogenic induction.

Results: PCs were consistently positive for the mesenchymal stem cell-related markers CD29, CD44, CD105, and CD166, but were negative for the haematopoietic-lineage markers CD31, CD34, CD45, and CD133. Alizarin Red S staining revealed that PCs formed a mineralised matrix that was rich in calcium deposits after osteogenic induction. ALP activity under osteogenic conditions was significantly higher than that under control conditions. Gene expression of ALP, Runx2, osterix, osteocalcin, and bone sialoprotein was observed in PCs cultured under osteogenic conditions. Induced pellets were negatively stained by Safranin O staining. Gene expression of aggrecan, collagen II, collagen X, SOX5, and SOX9 was not observed.

Conclusion: We have shown for the first time the properties of cells in patients with pseudoarthrosis. Our results indicated that osteogenic cells existed in the pseudoarthrosis tissue. This study might provide insights into understanding the pathology of pseudoarthrosis and improving the treatment for pseudoarthrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.injury.2016.02.022DOI Listing

Publication Analysis

Top Keywords

pseudoarthrosis tissue
8
pseudoarthrosis
8
pathology pseudoarthrosis
8
patients pseudoarthrosis
8
differentiation capacity
8
capacity assessed
8
alizarin red
8
red staining
8
alp activity
8
osteogenic induction
8

Similar Publications