Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The calcium-sensitive type VI adenylyl cyclase (AC6) is a membrane-bound adenylyl cyclase (AC) that converts ATP to cAMP under stimulation. It is a calcium-inhibited AC and integrates negative inputs from Ca(2+) and multiple other signals to regulate the intracellular cAMP level. In the present study, we demonstrate that AC6 functions upstream of CREB and negatively controls neuronal plasticity in the hippocampus. Genetic removal of AC6 leads to cyclase-independent and N-terminus of AC6 (AC6N)-dependent elevation of CREB expression, and enhances the expression of GluN2B-containing NMDA receptors in hippocampal neurons. Consequently, GluN2B-dependent calcium signaling and excitatory postsynaptic current, long-term depression, and spatial reversal learning are enhanced in the hippocampus of AC6(-/-) mice without altering the gross anatomy of the brain. Together, our results suggest that AC6 negatively regulates neuronal plasticity by modulating the levels of CREB and GluN2B in the hippocampus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4773765PMC
http://dx.doi.org/10.1038/srep22529DOI Listing

Publication Analysis

Top Keywords

adenylyl cyclase
12
type adenylyl
8
negatively regulates
8
spatial reversal
8
reversal learning
8
neuronal plasticity
8
ac6
5
cyclase negatively
4
regulates glun2b-mediated
4
glun2b-mediated spatial
4

Similar Publications

Purpose: To evaluate the impact of MRP inhibition by MK571 on prostate hypercontractility in diet-induced obesity, based on the hypothesis that this intervention enhances intracellular cAMP and cGMP signaling.

Methods: Adult C57BL/6 mice were divided into three groups: (i) lean, (ii) obese, and (iii) obese + MK571 (5 mg/kg/day, 14 days). The prostate was isolated for immunohistochemistry, biochemistry and functional assays.

View Article and Find Full Text PDF

Heterozygous loss-of-function mutations are one established cause of isolated dystonia and hyposmia. Homozygous mutations have been reported in siblings with generalized dystonia and intellectual disability. encodes major [NM_001369387.

View Article and Find Full Text PDF

Artemisinin alleviates Parkinson's disease by targeting Adcy5-Gch1 axis to trigger a cascade generation of BH4 and dopamine in rats.

Genome Biol

September 2025

Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, Guizhou, China. zhangfengzmc

Background: Parkinson's disease is a highly prevalent neurodegenerative disorder. Hyposecretion of dopamine (DA) is the end result in the pathology of Parkinson's disease. Unfortunately, safe and efficient therapeutic drugs are deficient.

View Article and Find Full Text PDF

Metabotropic glutamate receptor 1-mediated Ca response is potentiated by activation of metabotropic glutamate receptor 3 in the rat hippocampal marginal zone.

Brain Res Bull

September 2025

Department of Physiology Faculty of Medicine, Kansai Medical University, 2-5-1 Shin-machi Hirakata, Osaka 573-1010, Japan. Electronic address:

Metabotropic glutamate receptors (mGluRs) are G-protein coupled receptors (GPCRs) that mediate slow glutamatergic signal transduction and regulate cell excitability in the central nervous system. Group I mGluRs are coupled to G proteins and mobilize intracellular Ca. Group II mGluRs are coupled to G proteins and inhibit adenylyl cyclase.

View Article and Find Full Text PDF

Characterization of mice with cell type-specific Gnal loss of function provides insights on GNAL-linked dystonia.

Neurobiol Dis

September 2025

Inserm UMR-S 1270, Paris 75005, France; Sorbonne Université, Faculty of Sciences and Engineering, Paris 75005, France; Institut du Fer à Moulin, 17 rue du Fer à Moulin, Paris 75005, France; Sorbonne Université, Institut du Cerveau, Inserm, CNRS, AP-HP, Institut de Neurologie, Hôpital de la Salp

Isolated dystonia can be caused by loss-of-function mutations in the GNAL gene (DYT-GNAL/DYT25). This gene encodes the α subunit of the heterotrimeric G protein, which, with βγ subunits, mediates the stimulatory coupling of dopamine D1 and adenosine A2A receptors to adenylyl-cyclase. These receptors are expressed in distinct striatal projection neurons (SPNs) with complementary functions in motor behavior.

View Article and Find Full Text PDF